Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2017

25.09.2017

Effects of External Hydrogen on Hydrogen Transportation and Distribution Around the Fatigue Crack Tip in Type 304 Stainless Steel

verfasst von: Xingyang Chen, Chengshuang Zhou, Xiao Cai, Jinyang Zheng, Lin Zhang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of external hydrogen on hydrogen transportation and distribution around the fatigue crack tip in type 304 stainless steel were investigated by using hydrogen microprint technique (HMT) and thermal desorption spectrometry. HMT results show that some silver particles induced by hydrogen release are located near the fatigue crack and more silver particles are concentrated around the crack tip, which indicates that hydrogen accumulates in the vicinity of the crack tip during the crack growth in hydrogen gas environment. Along with the crack propagation, strain-induced α′ martensite forms around the crack tip and promotes hydrogen invasion into the matrix, which will cause the crack initiation and propagation at the austenite/α′ martensite interface. In addition, the hydrogen content in the vicinity of the crack tip is higher than that at the crack edge far away from the crack tip, which is related to the stress state and strain-induced α′ martensite.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Takeichia, H. Senoha, T. Yokotab, H. Tsurutab, K. Hamadab, H.T. Takeshitac, H. Tanakaa, T. Kiyobayashia, T. Takanod, and N. Kuriyamaa, “Hybrid Hydrogen Storage Vessel”, a Novel High-Pressure Hydrogen Storage Vessel Combined with Hydrogen Storage Material, Int. J. Hydrog. Energy, 2003, 28, p 1121–1129 N. Takeichia, H. Senoha, T. Yokotab, H. Tsurutab, K. Hamadab, H.T. Takeshitac, H. Tanakaa, T. Kiyobayashia, T. Takanod, and N. Kuriyamaa, “Hybrid Hydrogen Storage Vessel”, a Novel High-Pressure Hydrogen Storage Vessel Combined with Hydrogen Storage Material, Int. J. Hydrog. Energy, 2003, 28, p 1121–1129
2.
Zurück zum Zitat T. Neeraj, R. Srinivasan, and J. Li, Hydrogen Embrittlement of Ferritic Steels: Observations on Deformation Microstructure, Nanoscale Dimples and Failure by Nanovoiding, Acta Mater., 2012, 60, p 5160–5171CrossRef T. Neeraj, R. Srinivasan, and J. Li, Hydrogen Embrittlement of Ferritic Steels: Observations on Deformation Microstructure, Nanoscale Dimples and Failure by Nanovoiding, Acta Mater., 2012, 60, p 5160–5171CrossRef
3.
Zurück zum Zitat P. Rozenak, Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels, Metall. Mater. Trans. A, 2014, 45, p 162–178CrossRef P. Rozenak, Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels, Metall. Mater. Trans. A, 2014, 45, p 162–178CrossRef
4.
Zurück zum Zitat L. Briottet, I. Moro, and P. Lemoine, Quantifying the Hydrogen Embrittlement of Pipeline Steels for Safety Considerations, Int. J. Hydrog. Energy, 2012, 37, p 17616–17623CrossRef L. Briottet, I. Moro, and P. Lemoine, Quantifying the Hydrogen Embrittlement of Pipeline Steels for Safety Considerations, Int. J. Hydrog. Energy, 2012, 37, p 17616–17623CrossRef
5.
Zurück zum Zitat D. Lee, Y. Oda, and H. Noguchi, Observation of Small Fatigue Crack Growth Behavior in the Extremely Low Growth Rate Region of Low Carbon Steel in a Hydrogen Gas Environment, Int. J. Fract., 2013, 183, p 1–18CrossRef D. Lee, Y. Oda, and H. Noguchi, Observation of Small Fatigue Crack Growth Behavior in the Extremely Low Growth Rate Region of Low Carbon Steel in a Hydrogen Gas Environment, Int. J. Fract., 2013, 183, p 1–18CrossRef
6.
Zurück zum Zitat A. Macadre, M. Artamonov, S. Matsuoka, and J. Furtado, Effects of Hydrogen Pressure and Test Frequency on Fatigue Crack Growth Properties of Ni-Cr-Mo Steel Candidate for a Storage Cylinder of a 70 MPa Hydrogen Filling Station, Eng. Fract. Mech., 2011, 78(18), p 3196–3211CrossRef A. Macadre, M. Artamonov, S. Matsuoka, and J. Furtado, Effects of Hydrogen Pressure and Test Frequency on Fatigue Crack Growth Properties of Ni-Cr-Mo Steel Candidate for a Storage Cylinder of a 70 MPa Hydrogen Filling Station, Eng. Fract. Mech., 2011, 78(18), p 3196–3211CrossRef
7.
Zurück zum Zitat A.J. Slifka, E.S. Drexler, N.E. Nanninga, Y.S. Levy, J.D. McColskey, R.L. Amaro, and A.E. Stevenson, Fatigue Crack Growth of Two Pipeline Steels in a Pressurized Hydrogen Environment, Corros. Sci., 2014, 78(1), p 313–321CrossRef A.J. Slifka, E.S. Drexler, N.E. Nanninga, Y.S. Levy, J.D. McColskey, R.L. Amaro, and A.E. Stevenson, Fatigue Crack Growth of Two Pipeline Steels in a Pressurized Hydrogen Environment, Corros. Sci., 2014, 78(1), p 313–321CrossRef
8.
Zurück zum Zitat M.H. Keleş Temur and T.K. Chaki, The Effect of Various Atmospheres on the Threshold Fatigue Crack Growth Behavior of AISI, 304 Stainless Steel, Int. J. Fatigue, 2001, 23(2), p 169–174CrossRef M.H. Keleş Temur and T.K. Chaki, The Effect of Various Atmospheres on the Threshold Fatigue Crack Growth Behavior of AISI, 304 Stainless Steel, Int. J. Fatigue, 2001, 23(2), p 169–174CrossRef
9.
Zurück zum Zitat N. Saintier, T. Awane, J.M. Olive, S. Matsuoka, and Y. Murakami, Analyses of Hydrogen Distribution Around Fatigue Crack on Type 304 Stainless Steel Using Secondary Ion Mass Spectrometry, Int. J. Hydrog. Energy, 2011, 36(14), p 8630–8640CrossRef N. Saintier, T. Awane, J.M. Olive, S. Matsuoka, and Y. Murakami, Analyses of Hydrogen Distribution Around Fatigue Crack on Type 304 Stainless Steel Using Secondary Ion Mass Spectrometry, Int. J. Hydrog. Energy, 2011, 36(14), p 8630–8640CrossRef
10.
Zurück zum Zitat T.P. Perng and C.J. Altstetter, Comparison of Hydrogen Gas Embrittlement of Austenitic and Ferritic Stainless Steels, Metall. Mater. Trans. A, 1987, 18, p 123–134CrossRef T.P. Perng and C.J. Altstetter, Comparison of Hydrogen Gas Embrittlement of Austenitic and Ferritic Stainless Steels, Metall. Mater. Trans. A, 1987, 18, p 123–134CrossRef
11.
Zurück zum Zitat Y. Murakami, T. Kanezaki, Y. Mine, and S. Matsuoka, Hydrogen Embrittlement Mechanism in Fatigue of Austenitic Stainless Steels, Metall. Mater. Trans. A, 2008, 39, p 1327–1339CrossRef Y. Murakami, T. Kanezaki, Y. Mine, and S. Matsuoka, Hydrogen Embrittlement Mechanism in Fatigue of Austenitic Stainless Steels, Metall. Mater. Trans. A, 2008, 39, p 1327–1339CrossRef
12.
Zurück zum Zitat Y. Murakami and H. Matsunaga, The Effect of Hydrogen on Fatigue Properties of Steels Used for Fuel Cell System, Int. J. Fatigue, 2006, 28, p 1509–1520CrossRef Y. Murakami and H. Matsunaga, The Effect of Hydrogen on Fatigue Properties of Steels Used for Fuel Cell System, Int. J. Fatigue, 2006, 28, p 1509–1520CrossRef
13.
Zurück zum Zitat H. Matsunaga and H. Noda, Visualization of Hydrogen Diffusion in a Hydrogen-Enhanced Fatigue Crack Growth in Type 304 Stainless Steel, Metall. Mater. Trans. A, 2011, 42, p 2696–2705CrossRef H. Matsunaga and H. Noda, Visualization of Hydrogen Diffusion in a Hydrogen-Enhanced Fatigue Crack Growth in Type 304 Stainless Steel, Metall. Mater. Trans. A, 2011, 42, p 2696–2705CrossRef
14.
Zurück zum Zitat J. Ovejero-García, Hydrogen Microprint Technique in the Study of Hydrogen in Steels, J. Mater. Sci., 1985, 20, p 2623–2629CrossRef J. Ovejero-García, Hydrogen Microprint Technique in the Study of Hydrogen in Steels, J. Mater. Sci., 1985, 20, p 2623–2629CrossRef
15.
Zurück zum Zitat H.K. Yalçì and D.V. Edmonds, Application of the Hydrogen Microprint and the Microautoradiography Techniques to a Duplex Stainless Steel, Mater. Charact., 1995, 34(2), p 97–104CrossRef H.K. Yalçì and D.V. Edmonds, Application of the Hydrogen Microprint and the Microautoradiography Techniques to a Duplex Stainless Steel, Mater. Charact., 1995, 34(2), p 97–104CrossRef
16.
Zurück zum Zitat K. Ichitani and M. Kanno, Visualization of Hydrogen Diffusion in Steels by High Sensitivity Hydrogen Microprint Technique, Sci. Technol. Adv. Mater., 2003, 4, p 545–551CrossRef K. Ichitani and M. Kanno, Visualization of Hydrogen Diffusion in Steels by High Sensitivity Hydrogen Microprint Technique, Sci. Technol. Adv. Mater., 2003, 4, p 545–551CrossRef
17.
Zurück zum Zitat K. Ichitani, S. Kuramoto, and M. Kanno, Quantitative Evaluation of Detection Efficiency of the Hydrogen Microprint Technique Applied to Steel, Corros. Sci., 2003, 45, p 1227–1241CrossRef K. Ichitani, S. Kuramoto, and M. Kanno, Quantitative Evaluation of Detection Efficiency of the Hydrogen Microprint Technique Applied to Steel, Corros. Sci., 2003, 45, p 1227–1241CrossRef
18.
Zurück zum Zitat A. Nagao, S. Kuramoto, K. Ichitani, and M. Kanno, Visualization of Hydrogen Transport in High Strength Steels Affected by Stress Fields and Hydrogen Trapping, Scr. Mater., 2001, 45, p 1227–1232CrossRef A. Nagao, S. Kuramoto, K. Ichitani, and M. Kanno, Visualization of Hydrogen Transport in High Strength Steels Affected by Stress Fields and Hydrogen Trapping, Scr. Mater., 2001, 45, p 1227–1232CrossRef
19.
Zurück zum Zitat R.P. Gangloff and B.P. Somerday, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, Its Characterisation and Effects on Particular Alloy Classes, Woodhead Publishing Limited, Cambridge, 2012, p 379–380CrossRef R.P. Gangloff and B.P. Somerday, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, Its Characterisation and Effects on Particular Alloy Classes, Woodhead Publishing Limited, Cambridge, 2012, p 379–380CrossRef
20.
Zurück zum Zitat K.P. Staudhammer, L.E. Murr, and S.S. Hecker, Nucleation and Evolution of Strain-Induced Martensitic (b.c.c.) Embryos and Substructure in Stainless Steel: A Transmission Electron Microscope Study, Acta Metall., 1983, 31, p 267–274CrossRef K.P. Staudhammer, L.E. Murr, and S.S. Hecker, Nucleation and Evolution of Strain-Induced Martensitic (b.c.c.) Embryos and Substructure in Stainless Steel: A Transmission Electron Microscope Study, Acta Metall., 1983, 31, p 267–274CrossRef
21.
Zurück zum Zitat P. Sofronis and R.M. Mcmeeking, Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip, J. Mech. Phys. Solid, 1989, 37, p 317–350CrossRef P. Sofronis and R.M. Mcmeeking, Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip, J. Mech. Phys. Solid, 1989, 37, p 317–350CrossRef
22.
Zurück zum Zitat P. Neumann, New Experiments Concerning the Slip Processes at Propagating Fatigue Cracks-I, Acta Metall., 1974, 22, p 1155–1165CrossRef P. Neumann, New Experiments Concerning the Slip Processes at Propagating Fatigue Cracks-I, Acta Metall., 1974, 22, p 1155–1165CrossRef
23.
Zurück zum Zitat L. Zhang, B. An, S. Fukuyama, T. Iijima, and K. Yokogawa, Characterization of Hydrogen-Induced Crack Initiation in Metastable Austenitic Stainless Steels During Deformation, J. Appl. Phys., 2010, 108, p 242 L. Zhang, B. An, S. Fukuyama, T. Iijima, and K. Yokogawa, Characterization of Hydrogen-Induced Crack Initiation in Metastable Austenitic Stainless Steels During Deformation, J. Appl. Phys., 2010, 108, p 242
24.
Zurück zum Zitat S.P. Lynch, Environmentally Assisted Cracking: Overview of Evidence for an Adsorption-Induced Localised-Slip Process, Acta Metall., 1988, 36, p 2639–2661CrossRef S.P. Lynch, Environmentally Assisted Cracking: Overview of Evidence for an Adsorption-Induced Localised-Slip Process, Acta Metall., 1988, 36, p 2639–2661CrossRef
25.
Zurück zum Zitat S. Ohmiya and H. Fujii, Effects of Ni and Cr Contents on Fatigue Crack Growth Properties of SUS316-Based Stainless Steels in High-pressure Gaseous Hydrogen, ISIJ Int., 2012, 52(2), p 247–254CrossRef S. Ohmiya and H. Fujii, Effects of Ni and Cr Contents on Fatigue Crack Growth Properties of SUS316-Based Stainless Steels in High-pressure Gaseous Hydrogen, ISIJ Int., 2012, 52(2), p 247–254CrossRef
26.
Zurück zum Zitat T. Tabata and H.K. Birnbaum, Direct Observations of Hydrogen Enhanced Crack Propagation in Iron, Scr. Mater., 1984, 18, p 231–236 T. Tabata and H.K. Birnbaum, Direct Observations of Hydrogen Enhanced Crack Propagation in Iron, Scr. Mater., 1984, 18, p 231–236
Metadaten
Titel
Effects of External Hydrogen on Hydrogen Transportation and Distribution Around the Fatigue Crack Tip in Type 304 Stainless Steel
verfasst von
Xingyang Chen
Chengshuang Zhou
Xiao Cai
Jinyang Zheng
Lin Zhang
Publikationsdatum
25.09.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2968-0

Weitere Artikel der Ausgabe 10/2017

Journal of Materials Engineering and Performance 10/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.