Skip to main content
Erschienen in: Physics of Metals and Metallography 4/2020

01.04.2020 | STRENGTH AND PLASTICITY

Effects of Growth Rate on Eutectic Spacing, Microhardness, and Ultimate Tensile Strength in the Al–Cu–Ti Eutectic Alloy

verfasst von: Ümit Bayram, Necmettin Maraşlı

Erschienen in: Physics of Metals and Metallography | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present work, dependences of lamellar spacing (λ), microhardness (HV), and ultimate tensile strength (σUTS) on growth rate (V) were investigated in the Al–Cu–Ti (Al–33 wt % Cu–0.1 wt % Ti) eutectic alloy. For these purposes, the Al–Cu–Ti eutectic alloy was solidified at a constant temperature gradient of 6.45 K mm–1 with a wide range of growth rates, from 8.58 to 2038.65 µm/s. Then, the values of λ, HV, and σUTS were measured on the directionally solidified Al–Cu–Ti specimens. The dependences of λ, HV, and σUTS on V in the Al–Cu–Ti eutectic alloy were experimentally obtained using regression analysis. The results obtained in the present work were compared with the similar experimental results in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I. J. Polmear, Light Alloys Metallurgy of Light Metals, 3rd ed. (Edward Arnold, London, 1981) pp. 147–157. I. J. Polmear, Light Alloys Metallurgy of Light Metals, 3rd ed. (Edward Arnold, London, 1981) pp. 147–157.
2.
Zurück zum Zitat J. Auchet and J. L. Bretonet, “Experimental measurement of resistivity of aluminum-based liquid alloys,” Rev. Int. Hautes Temp. Refract. 26, 181–192 (1990). J. Auchet and J. L. Bretonet, “Experimental measurement of resistivity of aluminum-based liquid alloys,” Rev. Int. Hautes Temp. Refract. 26, 181–192 (1990).
3.
Zurück zum Zitat D. A. Porter and K. E. Easterlirng, Phase Transformations in Metals and Alloys, 2nd ed. (CRC Press, 1992).CrossRef D. A. Porter and K. E. Easterlirng, Phase Transformations in Metals and Alloys, 2nd ed. (CRC Press, 1992).CrossRef
4.
Zurück zum Zitat R. Caram and S. Milenkovic, “Microstructure of Ni–Ni3Si eutectic alloy produced by directional solidification,” J. Cryst. Growth. 198–199, 844–849 (1999).CrossRef R. Caram and S. Milenkovic, “Microstructure of Ni–Ni3Si eutectic alloy produced by directional solidification,” J. Cryst. Growth. 198199, 844–849 (1999).CrossRef
5.
Zurück zum Zitat H. Z. Fu and L. Liu, “Progress of directional solidification in processing of advanced materials,” Mater. Sci. Forum 475–479, 607–612 (2005).CrossRef H. Z. Fu and L. Liu, “Progress of directional solidification in processing of advanced materials,” Mater. Sci. Forum 475479, 607–612 (2005).CrossRef
6.
Zurück zum Zitat H. Jones, Rapid Solidification of Metals and Alloys (The Institution of Metallurgists, Sheffield, 1982). H. Jones, Rapid Solidification of Metals and Alloys (The Institution of Metallurgists, Sheffield, 1982).
7.
Zurück zum Zitat M. Tassa and J. D. Hunt, “The measurement of Al–Cu dendrite tip and eutectic interface temperatures and their use for predicting the extent of the eutectic range,” J. Cryst. Growth 34, 38–48 (1976).CrossRef M. Tassa and J. D. Hunt, “The measurement of Al–Cu dendrite tip and eutectic interface temperatures and their use for predicting the extent of the eutectic range,” J. Cryst. Growth 34, 38–48 (1976).CrossRef
8.
Zurück zum Zitat R. M. Jordan and J. D. Hunt, “The growth of lamellar eutectic structures in the Pb–Sn and Al–CuAl2 systems,” Mater. Trans. 2, 3401–3410 (1971).CrossRef R. M. Jordan and J. D. Hunt, “The growth of lamellar eutectic structures in the Pb–Sn and Al–CuAl2 systems,” Mater. Trans. 2, 3401–3410 (1971).CrossRef
9.
Zurück zum Zitat M. Rhême, F. Gonzales, and M. Rappaz, “Growth directions in directionally solidified Al–Zn and Zn–Al alloys near eutectic composition,” Scr. Mater. 59, 440–443 (2006).CrossRef M. Rhême, F. Gonzales, and M. Rappaz, “Growth directions in directionally solidified Al–Zn and Zn–Al alloys near eutectic composition,” Scr. Mater. 59, 440–443 (2006).CrossRef
10.
Zurück zum Zitat F. Gonzales and M. Rappaz, “Dendrite growth directions in aluminum-zinc alloys,” Metall. Mater. Trans. A 37, 2797–2806 (2006).CrossRef F. Gonzales and M. Rappaz, “Dendrite growth directions in aluminum-zinc alloys,” Metall. Mater. Trans. A 37, 2797–2806 (2006).CrossRef
11.
Zurück zum Zitat W. R. Osório, J. E. Spinelli, N. Cheung, and A. Garcia, “Secondary dendrite arm spacing and solute redistribution effects on the corrosion resistance of Al–10 wt % Sn and Al–20 wt % Zn alloys,” Mater. Sci. Eng., A 420, 179–186 (2006).CrossRef W. R. Osório, J. E. Spinelli, N. Cheung, and A. Garcia, “Secondary dendrite arm spacing and solute redistribution effects on the corrosion resistance of Al–10 wt % Sn and Al–20 wt % Zn alloys,” Mater. Sci. Eng., A 420, 179–186 (2006).CrossRef
12.
Zurück zum Zitat J. De Wilde, L. Froyen, and S. Rex, “Coupled two-phase [α(Al) + θ(Al2Cu)] planar growth and destabilisation along the univariant eutectic reaction in Al–Cu–Ag alloys,” Scr. Mater. 51, 533–538 (2004).CrossRef J. De Wilde, L. Froyen, and S. Rex, “Coupled two-phase [α(Al) + θ(Al2Cu)] planar growth and destabilisation along the univariant eutectic reaction in Al–Cu–Ag alloys,” Scr. Mater. 51, 533–538 (2004).CrossRef
13.
Zurück zum Zitat K. A. Jackson and J. D. Hunt, “Lamellar and rod eutectic growth,” Trans. Metall. Soc. AIME 236, 1129–1142 (1966). K. A. Jackson and J. D. Hunt, “Lamellar and rod eutectic growth,” Trans. Metall. Soc. AIME 236, 1129–1142 (1966).
14.
Zurück zum Zitat V. Datye and J. S. Langer, “Stability of thin lamellar eutectic growth,” Phys. Rev. B 24, 4155–4169 (1981).CrossRef V. Datye and J. S. Langer, “Stability of thin lamellar eutectic growth,” Phys. Rev. B 24, 4155–4169 (1981).CrossRef
15.
Zurück zum Zitat V. Seetharaman and R. Trivedi, “Eutectic growth: Selection of interlamellar spacings,” Metall. Trans. A 19, 2955–2964 (1988).CrossRef V. Seetharaman and R. Trivedi, “Eutectic growth: Selection of interlamellar spacings,” Metall. Trans. A 19, 2955–2964 (1988).CrossRef
16.
Zurück zum Zitat R. Trivedi, J. T. Mason, J. D. Verhoeven, and W. Kurz, “Eutectic spacing selection in lead-based alloy systems,” Metall. Trans. A 22, 2523–2533 (1991).CrossRef R. Trivedi, J. T. Mason, J. D. Verhoeven, and W. Kurz, “Eutectic spacing selection in lead-based alloy systems,” Metall. Trans. A 22, 2523–2533 (1991).CrossRef
17.
Zurück zum Zitat V. T. Witusiewicz, U. Hecht, S. Rex, and M. Apel, “In situ observation of microstructure evolution in low-melting Bi–In–Sn alloys by light microscopy,” Acta Mater. 53, 3663–3669 (2005).CrossRef V. T. Witusiewicz, U. Hecht, S. Rex, and M. Apel, “In situ observation of microstructure evolution in low-melting Bi–In–Sn alloys by light microscopy,” Acta Mater. 53, 3663–3669 (2005).CrossRef
18.
Zurück zum Zitat R. Trivedi, P. Magnin, and W. Kurz, “Theory of eutectic growth under rapid solidification conditions,” Acta Metall. 35, 971–980 (1987).CrossRef R. Trivedi, P. Magnin, and W. Kurz, “Theory of eutectic growth under rapid solidification conditions,” Acta Metall. 35, 971–980 (1987).CrossRef
19.
Zurück zum Zitat M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi, “Solidification microstructures and solid–state parallels: Recent developments, future directions,” Acta Mater. 57, 941–971 (2009).CrossRef M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi, “Solidification microstructures and solid–state parallels: Recent developments, future directions,” Acta Mater. 57, 941–971 (2009).CrossRef
20.
Zurück zum Zitat S. M. D. Borland and R. Elliott, “Growth temperatures in Al–CuAl2 and Sn-Cd eutectic alloys,” Metall. Trans. A 9, 1063–1067 (1987).CrossRef S. M. D. Borland and R. Elliott, “Growth temperatures in Al–CuAl2 and Sn-Cd eutectic alloys,” Metall. Trans. A 9, 1063–1067 (1987).CrossRef
21.
Zurück zum Zitat A. Ourdjini, J. Liu, and R. Elliott, “Eutectic spacing selection in Al–Cu system,” Mater. Sci. Technol. 10, 312–318 (1994).CrossRef A. Ourdjini, J. Liu, and R. Elliott, “Eutectic spacing selection in Al–Cu system,” Mater. Sci. Technol. 10, 312–318 (1994).CrossRef
22.
Zurück zum Zitat H. Kaya, E. Çadırlı, and M. Gündüz, “Eutectic growth of unidirectionally solidified bismuth-cadmium alloy,” J. Mater. Process. Technol. 183, 310–320 (2007).CrossRef H. Kaya, E. Çadırlı, and M. Gündüz, “Eutectic growth of unidirectionally solidified bismuth-cadmium alloy,” J. Mater. Process. Technol. 183, 310–320 (2007).CrossRef
23.
Zurück zum Zitat Y. Kaygısız and N. Maraşlı, “Microstructural, mechanical and electrical characterization of directionally solidified Al–Si–Mg eutectic alloy,” J. Alloys Compd. 618, 197–203 (2015).CrossRef Y. Kaygısız and N. Maraşlı, “Microstructural, mechanical and electrical characterization of directionally solidified Al–Si–Mg eutectic alloy,” J. Alloys Compd. 618, 197–203 (2015).CrossRef
24.
Zurück zum Zitat H. Kaya, U. Böyük, E. Çadırlı, and N. Maraşlı, “Unidirectional solidification of aluminum–nickel eutectic alloy,” Kovove Mater. 48, 291–300 (2010). H. Kaya, U. Böyük, E. Çadırlı, and N. Maraşlı, “Unidirectional solidification of aluminum–nickel eutectic alloy,” Kovove Mater. 48, 291–300 (2010).
25.
Zurück zum Zitat E. Çadırlı, U. Böyük, H. Kaya, N. Maraşlı, K. Keşlioğlu, S. Akbulut, and Y. Ocak, “Experimental investigation of the effect of solidification processing parameters on the rod spacings in the Sn–1.2 wt % Cu alloy,” J. Alloys Compd. 470, 150–156 (2009).CrossRef E. Çadırlı, U. Böyük, H. Kaya, N. Maraşlı, K. Keşlioğlu, S. Akbulut, and Y. Ocak, “Experimental investigation of the effect of solidification processing parameters on the rod spacings in the Sn–1.2 wt % Cu alloy,” J. Alloys Compd. 470, 150–156 (2009).CrossRef
26.
Zurück zum Zitat U. Böyük, N. Maraşlı, H. Kaya, E. Çadırlı, and K, Keşlioğlu, “Variations of microhardness with solidification parameters and electrical resistivity with temperature for Al–Cu–Ag eutectic alloy,” Curr. Appl. Phys. 12, 7–10 (2012).CrossRef U. Böyük, N. Maraşlı, H. Kaya, E. Çadırlı, and K, Keşlioğlu, “Variations of microhardness with solidification parameters and electrical resistivity with temperature for Al–Cu–Ag eutectic alloy,” Curr. Appl. Phys. 12, 7–10 (2012).CrossRef
27.
Zurück zum Zitat S. Engin, U. Böyük, and N. Maraşlı, “The effects of microstructure and growth rate on microhardness, tensile strength, and electrical resistivity for directionally solidified Al–Ni–Fe alloys,” J. Alloys Compd. 660, 23–31 (2016).CrossRef S. Engin, U. Böyük, and N. Maraşlı, “The effects of microstructure and growth rate on microhardness, tensile strength, and electrical resistivity for directionally solidified Al–Ni–Fe alloys,” J. Alloys Compd. 660, 23–31 (2016).CrossRef
28.
Zurück zum Zitat E. Çadırlı, İ. Yılmazer, M. Şahin, and H. Kaya, “Investigation of the some physical properties of the directionally solidified Al–Cu–Co ternary eutectic alloy,” Trans. Indian Inst. Met. 68, 817–827 (2015).CrossRef E. Çadırlı, İ. Yılmazer, M. Şahin, and H. Kaya, “Investigation of the some physical properties of the directionally solidified Al–Cu–Co ternary eutectic alloy,” Trans. Indian Inst. Met. 68, 817–827 (2015).CrossRef
29.
Zurück zum Zitat U. Böyük, N. Maraşlı, H. Kaya, E. Çadırlı, and K. Keşlioğlu, “Directional solidification of Al–Cu–Ag alloy,” Appl Phys A 95, 923–932 (2009).CrossRef U. Böyük, N. Maraşlı, H. Kaya, E. Çadırlı, and K. Keşlioğlu, “Directional solidification of Al–Cu–Ag alloy,” Appl Phys A 95, 923–932 (2009).CrossRef
30.
Zurück zum Zitat E. Çadırlı, “Effect of solidification parameters on mechanical properties of directionally solidified Al–Rich Al–Cu alloys,” Met. Mater. Int. 19, 411–422 (2013).CrossRef E. Çadırlı, “Effect of solidification parameters on mechanical properties of directionally solidified Al–Rich Al–Cu alloys,” Met. Mater. Int. 19, 411–422 (2013).CrossRef
31.
Zurück zum Zitat Y. Kaygısız and N. Maraşlı, “Microstructural, mechanical and electrical characterization of directionally solidified Al–Cu–Mg eutectic alloy,” Phys. Met. Metallogr. 118, 389–398 (2017).CrossRef Y. Kaygısız and N. Maraşlı, “Microstructural, mechanical and electrical characterization of directionally solidified Al–Cu–Mg eutectic alloy,” Phys. Met. Metallogr. 118, 389–398 (2017).CrossRef
32.
Zurück zum Zitat Ü. Bayram and N. Maraşlı, “Influence of growth rate on eutectic spacings, microhardness and ultimate tensile strength in the directionally solidified Al–Cu–Ni eutectic alloy,” Metall. Mater. Trans. B 49, 3293–3305 (2018).CrossRef Ü. Bayram and N. Maraşlı, “Influence of growth rate on eutectic spacings, microhardness and ultimate tensile strength in the directionally solidified Al–Cu–Ni eutectic alloy,” Metall. Mater. Trans. B 49, 3293–3305 (2018).CrossRef
33.
Zurück zum Zitat M. A. Ivanov and A. Yu. Naumuk, “Kinetics of eutectic solidification,” Phys. Met. Metallogr. 115, 471–480 (2014).CrossRef M. A. Ivanov and A. Yu. Naumuk, “Kinetics of eutectic solidification,” Phys. Met. Metallogr. 115, 471–480 (2014).CrossRef
34.
Zurück zum Zitat E. A. Mohamed and A. Yu. Churyumov, “Investigation of the microstructure and properties of Al–Si–Mg/SiC composite materials produced by solidification under pressure,” Phys. Met. Metallogr. 117, 1054–1060 (2016).CrossRef E. A. Mohamed and A. Yu. Churyumov, “Investigation of the microstructure and properties of Al–Si–Mg/SiC composite materials produced by solidification under pressure,” Phys. Met. Metallogr. 117, 1054–1060 (2016).CrossRef
35.
Zurück zum Zitat V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Elsevier, Pittsburgh, 2007).CrossRef V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys (Elsevier, Pittsburgh, 2007).CrossRef
36.
Zurück zum Zitat M. Hansen and K. Anderko, Constitutions of Binary Alloys, 2nd ed. (McGraw-Hill, New York, 1958), pp. 139–141.CrossRef M. Hansen and K. Anderko, Constitutions of Binary Alloys, 2nd ed. (McGraw-Hill, New York, 1958), pp. 139–141.CrossRef
37.
Zurück zum Zitat X. Lin, W. D. Huang, J. Feng, T. Li, and Y. Zhou, “History-dependent selection of primary cellular/dendritic spacing during unidirectional solidification in aluminum alloys,” Acta Mater. 47, 3271–3280 (1999).CrossRef X. Lin, W. D. Huang, J. Feng, T. Li, and Y. Zhou, “History-dependent selection of primary cellular/dendritic spacing during unidirectional solidification in aluminum alloys,” Acta Mater. 47, 3271–3280 (1999).CrossRef
38.
Zurück zum Zitat K. P. Young and D. H. Kirkwood, “The dendrite arm spacings of aluminum-copper alloys solidified under steady-state conditions,” Metall. Trans. A 6, 197–205 (1975).CrossRef K. P. Young and D. H. Kirkwood, “The dendrite arm spacings of aluminum-copper alloys solidified under steady-state conditions,” Metall. Trans. A 6, 197–205 (1975).CrossRef
39.
Zurück zum Zitat M. A. Mota, A. A. Coelho, J. M. Z. Bejarano, S. Gama, and R. Caram, “Fe–Al–Nb phase diagram investigation and directional growth of the (Fe,Al)2Nb–(Fe, Al,Nb)ss eutectic system,” J. Alloys Compd. 399, 196–201 (2005).CrossRef M. A. Mota, A. A. Coelho, J. M. Z. Bejarano, S. Gama, and R. Caram, “Fe–Al–Nb phase diagram investigation and directional growth of the (Fe,Al)2Nb–(Fe, Al,Nb)ss eutectic system,” J. Alloys Compd. 399, 196–201 (2005).CrossRef
40.
Zurück zum Zitat A. Munitz, “Microstructure of rapidly solidified laser molten AI–4.5 wt % Cu surfaces,” Metall. Trans. B 16, 149–161 (1965).CrossRef A. Munitz, “Microstructure of rapidly solidified laser molten AI–4.5 wt % Cu surfaces,” Metall. Trans. B 16, 149–161 (1965).CrossRef
41.
Zurück zum Zitat M. Zimmermann, M. Carrard, and W. Kurz, “Rapid solidification of Al–Cu eutectic alloy by laser remelting,” Acta Metall. 37, 3305–3313 (1989).CrossRef M. Zimmermann, M. Carrard, and W. Kurz, “Rapid solidification of Al–Cu eutectic alloy by laser remelting,” Acta Metall. 37, 3305–3313 (1989).CrossRef
42.
Zurück zum Zitat N. Cheung, M. C. F. Ierardi, A. Garcia, and R. Vilar, “The use of artificial intelligence for the optimization of a laser transformation hardening process,” Lasers Eng. 10, 275–291 (2000). N. Cheung, M. C. F. Ierardi, A. Garcia, and R. Vilar, “The use of artificial intelligence for the optimization of a laser transformation hardening process,” Lasers Eng. 10, 275–291 (2000).
43.
Zurück zum Zitat W. R. Osório and A. Garcia, “Modeling dendritic structure and mechanical properties of Zn–Al alloys as a function of solidification conditions,” Mater. Sci. Eng., A 325, 103–111 (2002).CrossRef W. R. Osório and A. Garcia, “Modeling dendritic structure and mechanical properties of Zn–Al alloys as a function of solidification conditions,” Mater. Sci. Eng., A 325, 103–111 (2002).CrossRef
44.
Zurück zum Zitat J. Quaresma, C. A. Santos, and A. Garcia, “Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al–Cu alloys,” Metall. Trans. A 31, 3167–3178 (2000).CrossRef J. Quaresma, C. A. Santos, and A. Garcia, “Correlation between unsteady-state solidification conditions, dendrite spacings, and mechanical properties of Al–Cu alloys,” Metall. Trans. A 31, 3167–3178 (2000).CrossRef
45.
Zurück zum Zitat C. Siqueira, N. Cheung, and A. Garcia, “Solidification thermal parameters affecting the columnar-to-equiaxed transition,” Metall. Mater. Trans. A 33, 2107–2118 (2002).CrossRef C. Siqueira, N. Cheung, and A. Garcia, “Solidification thermal parameters affecting the columnar-to-equiaxed transition,” Metall. Mater. Trans. A 33, 2107–2118 (2002).CrossRef
46.
Zurück zum Zitat E. O. Hall, “The Deformation and Ageing of Mild Steel: III Discussion of Results,” Proc. Phys. Soc. B 64, 747–753 (1951).CrossRef E. O. Hall, “The Deformation and Ageing of Mild Steel: III Discussion of Results,” Proc. Phys. Soc. B 64, 747–753 (1951).CrossRef
47.
Zurück zum Zitat N. J. Petch, “The cleavage strength of polycrystals,” J. Iron Steel Inst. 174, 25–28 (1953). N. J. Petch, “The cleavage strength of polycrystals,” J. Iron Steel Inst. 174, 25–28 (1953).
Metadaten
Titel
Effects of Growth Rate on Eutectic Spacing, Microhardness, and Ultimate Tensile Strength in the Al–Cu–Ti Eutectic Alloy
verfasst von
Ümit Bayram
Necmettin Maraşlı
Publikationsdatum
01.04.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 4/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2004016X

Weitere Artikel der Ausgabe 4/2020

Physics of Metals and Metallography 4/2020 Zur Ausgabe