Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2016

12.05.2016

Effects of magnetic-field-dependent viscosity at onset of convection in magnetic nanofluids

verfasst von: M. Arora, R. Singh, M. K. Panda

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Convective instability in a thin layer of a magnetic nanofluid heated from below is examined within the framework of linear stability theory. Recent results, in particular those of Blums et al. (J Phys 20:1–5, 2008), have shown the importance of the dependence of the thermophysical properties of magnetic nanofluids on an externally applied magnetic field while studying thermomagnetic convection in a magnetic nanofluid. The model used incorporates the effect of Brownian diffusion, thermophoresis, and magnetophoresis. In addition, we assume that the viscosity of the magnetic nanofluid is a function of the externally applied magnetic field. The resulting eigenvalue problem from the linear stability analysis is solved by employing the Chebyshev pseudospectral method, and the results are discussed for water- and ester-based magnetic nanofluids. A “tight coupling” between buoyancy and magnetic forces has been observed in magnetic nanofluids. The effects of the important parameters of the problem are examined at the onset of convection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Choi S (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of non-Newtonian flows, FED vol 231/MD-vol 66. ASME, San Francisco, pp 99–105 Choi S (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of non-Newtonian flows, FED vol 231/MD-vol 66. ASME, San Francisco, pp 99–105
2.
Zurück zum Zitat Nield DA, Kuznetsov AV (2010) The onset of convection in a horizontal nanofluid layer of finite depth. Eur J Mech B Fluids 29:217–223MathSciNetCrossRefMATH Nield DA, Kuznetsov AV (2010) The onset of convection in a horizontal nanofluid layer of finite depth. Eur J Mech B Fluids 29:217–223MathSciNetCrossRefMATH
3.
Zurück zum Zitat Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Trans 128:240–250CrossRef Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Trans 128:240–250CrossRef
4.
Zurück zum Zitat Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720ADSCrossRef Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720ADSCrossRef
5.
Zurück zum Zitat Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Trans 125:567–574CrossRef Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Trans 125:567–574CrossRef
6.
Zurück zum Zitat Polidori G, Fohanno S, Nguyen CT (2007) A note on heat transfer modeling of Newtonian nanofluids in laminar free convection. Int J Therm Sci 46(8):739–744CrossRef Polidori G, Fohanno S, Nguyen CT (2007) A note on heat transfer modeling of Newtonian nanofluids in laminar free convection. Int J Therm Sci 46(8):739–744CrossRef
7.
Zurück zum Zitat Tzou DY (2008) Thermal instability of nanofluids in natural convection. Int J Heat Mass Trans 51:2967–2979CrossRefMATH Tzou DY (2008) Thermal instability of nanofluids in natural convection. Int J Heat Mass Trans 51:2967–2979CrossRefMATH
8.
Zurück zum Zitat Dhananjay, Agrawal GS, Bhargava R (2011) Rayleigh–Bénard convection in nanofluid. Int J Appl Math Mech 7(2):61–76MATH Dhananjay, Agrawal GS, Bhargava R (2011) Rayleigh–Bénard convection in nanofluid. Int J Appl Math Mech 7(2):61–76MATH
9.
Zurück zum Zitat Tzou DY (2008) Instability of nanofluids in natural convection. ASME J Heat Trans 130:1–9CrossRefMATH Tzou DY (2008) Instability of nanofluids in natural convection. ASME J Heat Trans 130:1–9CrossRefMATH
10.
Zurück zum Zitat Alloui Z, Vassseur P, Reggio M (2011) Natural convection of nanofluids in a shallow cavity heated from below. Int J Therm Sci 50:385–393CrossRef Alloui Z, Vassseur P, Reggio M (2011) Natural convection of nanofluids in a shallow cavity heated from below. Int J Therm Sci 50:385–393CrossRef
11.
Zurück zum Zitat Nkurikiyimfura I, Wang Y, Pan Z (2013) Heat transfer enhancement by magnetic nanofluids: a review. Renew Sustain Energy Rev 21:548–561CrossRef Nkurikiyimfura I, Wang Y, Pan Z (2013) Heat transfer enhancement by magnetic nanofluids: a review. Renew Sustain Energy Rev 21:548–561CrossRef
12.
13.
Zurück zum Zitat Gotoh K, Yamada M (1982) Thermal convection in a horizontal layer of magnetic fluids. J Phys Soc Jpn 51:3042–3048ADSCrossRef Gotoh K, Yamada M (1982) Thermal convection in a horizontal layer of magnetic fluids. J Phys Soc Jpn 51:3042–3048ADSCrossRef
14.
Zurück zum Zitat Blennerhassett PJ, Lin F, Stiles PJ (1991) Heat transfer through strongly magnetized ferrofluids. Proc R Soc Lond Ser A 433(1887):165–177ADSCrossRefMATH Blennerhassett PJ, Lin F, Stiles PJ (1991) Heat transfer through strongly magnetized ferrofluids. Proc R Soc Lond Ser A 433(1887):165–177ADSCrossRefMATH
15.
Zurück zum Zitat Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324(6):903–915ADSCrossRef Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324(6):903–915ADSCrossRef
16.
Zurück zum Zitat Stiles PJ, Kagan M (1990) Thermalconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field. J Magn Magn Mater 85:196–198ADSCrossRef Stiles PJ, Kagan M (1990) Thermalconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field. J Magn Magn Mater 85:196–198ADSCrossRef
17.
18.
Zurück zum Zitat Mahajan A, Arora M (2013) Convection in rotating magnetic nanofluids. Appl Math Comput 219:6284–6296MathSciNetMATH Mahajan A, Arora M (2013) Convection in rotating magnetic nanofluids. Appl Math Comput 219:6284–6296MathSciNetMATH
19.
Zurück zum Zitat Blums E, Mezulis A, Kronkalns G (2008) Magnetoconvective heat transfer from a cylinder under the influence of nonuniform magnetic field. J Phys 20:1–5 Blums E, Mezulis A, Kronkalns G (2008) Magnetoconvective heat transfer from a cylinder under the influence of nonuniform magnetic field. J Phys 20:1–5
20.
Zurück zum Zitat Shuchia S, Sakatanib K, Yamaguchi H (2005) An application of a binary mixture of magnetic fluid for heat transport devices. Proceedings of 10th international conference on magnetic fluids. J Magn Magn Mater 289:257–259ADSCrossRef Shuchia S, Sakatanib K, Yamaguchi H (2005) An application of a binary mixture of magnetic fluid for heat transport devices. Proceedings of 10th international conference on magnetic fluids. J Magn Magn Mater 289:257–259ADSCrossRef
21.
Zurück zum Zitat Yamaguchi H, Niu X-D, Zhang X-R, Keisuke Y (2009) Experimental and numerical investigation of natural convection of magnetic fluids in cubic cavity. J Magn Magn Mater 321(22):3665–3670ADSCrossRef Yamaguchi H, Niu X-D, Zhang X-R, Keisuke Y (2009) Experimental and numerical investigation of natural convection of magnetic fluids in cubic cavity. J Magn Magn Mater 321(22):3665–3670ADSCrossRef
22.
Zurück zum Zitat Yamaguchi H, Niu X-D, Zhang X-R, Keisuke Y (2010) Thermomagnetic natural convection of thermo-sensitive magnetic fluids in cubic cavity with heat generating object inside. J Magn Magn Mater 322(6):698–704ADSCrossRef Yamaguchi H, Niu X-D, Zhang X-R, Keisuke Y (2010) Thermomagnetic natural convection of thermo-sensitive magnetic fluids in cubic cavity with heat generating object inside. J Magn Magn Mater 322(6):698–704ADSCrossRef
23.
Zurück zum Zitat Shliomis MI (2002) Convective instability of magnetized ferrofluids: influence of magnetophoresis and Soret effect. In: Kohler W, Weigand S (eds),Thermal nonequilibrium phenomenon in fluid mixtures. Lecture Notes in Physics, vol 584. Springer, Berlin, pp 355–371 Shliomis MI (2002) Convective instability of magnetized ferrofluids: influence of magnetophoresis and Soret effect. In: Kohler W, Weigand S (eds),Thermal nonequilibrium phenomenon in fluid mixtures. Lecture Notes in Physics, vol 584. Springer, Berlin, pp 355–371
24.
Zurück zum Zitat Shliomis MI (1972) Effective viscosity of magnetic suspensions. Sov Phys JETP 34(6):1291–1294ADS Shliomis MI (1972) Effective viscosity of magnetic suspensions. Sov Phys JETP 34(6):1291–1294ADS
25.
Zurück zum Zitat Rosensweig RE (1997) Ferrohydrodynamics. Dover Publications, Mineola Rosensweig RE (1997) Ferrohydrodynamics. Dover Publications, Mineola
26.
Zurück zum Zitat Canuto C, Hussaini MY, Quateroni A, Zang T (1998) Spectral methods in fluid dynamics. Springer, New York Canuto C, Hussaini MY, Quateroni A, Zang T (1998) Spectral methods in fluid dynamics. Springer, New York
27.
Zurück zum Zitat Kaloni PN, Lou JX (2002) Stability of Hadley circulations in a Maxwell fluid. J Non Newton Fluid Mech 103:167–186CrossRefMATH Kaloni PN, Lou JX (2002) Stability of Hadley circulations in a Maxwell fluid. J Non Newton Fluid Mech 103:167–186CrossRefMATH
28.
Zurück zum Zitat Chandrasekhar S (1981) Hydrodynamic and hydromagnetic stability. Dover, New YorkMATH Chandrasekhar S (1981) Hydrodynamic and hydromagnetic stability. Dover, New YorkMATH
29.
30.
Zurück zum Zitat Kaloni PN, Lou JX (2004) Convective instability of magnetic fluids. Phys Rev E 70:1–12CrossRef Kaloni PN, Lou JX (2004) Convective instability of magnetic fluids. Phys Rev E 70:1–12CrossRef
Metadaten
Titel
Effects of magnetic-field-dependent viscosity at onset of convection in magnetic nanofluids
verfasst von
M. Arora
R. Singh
M. K. Panda
Publikationsdatum
12.05.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2016
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-016-9855-9

Weitere Artikel der Ausgabe 1/2016

Journal of Engineering Mathematics 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.