Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 3/2015

01.06.2015

Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-C Steels

verfasst von: Jian Yang, Yu-Nan Wang, Xiao-Ming Ruan, Rui-Zhi Wang, Kai Zhu, Zheng-Jie Fan, Ying-Chun Wang, Cheng-Bin Li, Xiao-Fang Jiang

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The solidification structures and the thermal properties of Fe-Mn-C steel ingots containing different manganese contents have been investigated and the phase transformation characteristics have been revealed by Thermo-Calc to assist development of the continuous casting technology of Fe-Mn-C steels. The results show that the thermal conductivity of the 0Mn steel is higher than that of the 3Mn steel. The thermal conductivity of the 6Mn steel is the lowest in the three kinds of steels below 1023 K (750 °C) and the highest above 1173 K (900 °C). The 0Mn steel has the highest value of the proportion of equiaxed grain zone area in the three kinds of steels, whereas the 3Mn steel has the lowest value of it in the steels. Manganese has the effect of promoting the coarsening of grains. The microstructure is martensite and a little retained austenite (3.8 mass pct) in the 6Mn steel, whereas the microstructure is bainite in the 3Mn steel. The 0Mn steel is characterized by ferrite and pearlite. The mean thermal expansion coefficients of the steels are in the range from 1.0 × 10−5 to 1.6 × 10−5 K−1, and the determinations of mold tapers of the 6Mn and 3Mn steels can refer to low-carbon steel. Using RA <60 pct as the criterion, the third brittle temperature region of the 6Mn steel is 873 K to 1073 K (600 °C to 800 °C), whereas those of the 3Mn steel and the 0Mn steel are 873 K to 1123 K (600 °C to 850 °C) and 873 K to 1173 K (600 °C to 900 °C), respectively. In the 6Mn and 3Mn steels, the deformation-induced ferrite (DIF) forms in sufficient quantities cause the recovery of the ductility at the low temperature end. However, since low strains are present when straightening, sufficient quantities of DIF cannot be formed. Thus, the ductility of the 6Mn and 3Mn steels cannot be improved during the continuous casting process. Manganese has the effect of enlarging the austenite phase region and reducing the δ-ferrite phase region and α-ferrite phase region.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. J. Gibbs, E. De Moor, M. J. Merwin, B. Clausen, J. G. Speer, and D. K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3691-702.CrossRef P. J. Gibbs, E. De Moor, M. J. Merwin, B. Clausen, J. G. Speer, and D. K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3691-702.CrossRef
2.
Zurück zum Zitat D.K. Matlock and J.G. Speer: in Microstructure and Texture in Steels. Springer, London, 2009, pp. 185–205. D.K. Matlock and J.G. Speer: in Microstructure and Texture in Steels. Springer, London, 2009, pp. 185–205.
4.
Zurück zum Zitat T. Furukawa, H. Huang, and O. Matsumura: Mater. Sci. Technol., 1994, vol. 10, pp. 964-70.CrossRef T. Furukawa, H. Huang, and O. Matsumura: Mater. Sci. Technol., 1994, vol. 10, pp. 964-70.CrossRef
5.
Zurück zum Zitat A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, and P. Barges: Mater. Sci. Eng., A, 2012, vol. 542, pp. 31-39.CrossRef A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, and P. Barges: Mater. Sci. Eng., A, 2012, vol. 542, pp. 31-39.CrossRef
6.
Zurück zum Zitat H. Huang, O. Matsumura, and T. Furukawa: Mater. Sci. Technol., 1994, vol. 10, pp. 621-26.CrossRef H. Huang, O. Matsumura, and T. Furukawa: Mater. Sci. Technol., 1994, vol. 10, pp. 621-26.CrossRef
7.
Zurück zum Zitat Y. Fan, M. L. Wang, H. Zhang, H. B. Tao, P. Zhao, and S. Q. Li: J. Univ. Sci. Technol. B., 2013, vol. 35, pp. 607-12. Y. Fan, M. L. Wang, H. Zhang, H. B. Tao, P. Zhao, and S. Q. Li: J. Univ. Sci. Technol. B., 2013, vol. 35, pp. 607-12.
8.
Zurück zum Zitat H. B. Tao, M. L. Wang, Y. Fan, H. Zhang, and P. Zhao: Steelmak., 2013, vol. 29, pp. 65-69. H. B. Tao, M. L. Wang, Y. Fan, H. Zhang, and P. Zhao: Steelmak., 2013, vol. 29, pp. 65-69.
9.
Zurück zum Zitat B. Sundman, B. Jansson, and J. O. Andersson: Calphad, 1985, vol. 9, pp. 153-190.CrossRef B. Sundman, B. Jansson, and J. O. Andersson: Calphad, 1985, vol. 9, pp. 153-190.CrossRef
10.
Zurück zum Zitat J. O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273-312.CrossRef J. O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273-312.CrossRef
11.
Zurück zum Zitat Y. H. Xiong, P. J. Li, A. M. Yang, W. D. Yan, D. B. Zeng, and L. Liu: Acta Metall. Sin., 2002, vol. 38, pp. 529-33. Y. H. Xiong, P. J. Li, A. M. Yang, W. D. Yan, D. B. Zeng, and L. Liu: Acta Metall. Sin., 2002, vol. 38, pp. 529-33.
12.
Zurück zum Zitat W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott: J. Appl. Phys., 1961, vol. 32, pp. 1679-84.CrossRef W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott: J. Appl. Phys., 1961, vol. 32, pp. 1679-84.CrossRef
13.
Zurück zum Zitat L. Q. Zhang, Y. P. Bao, M. Wang, Z. Peng, and R. Wang: J. Iron Steel Res., 2012, vol. 24, pp. 40-44. L. Q. Zhang, Y. P. Bao, M. Wang, Z. Peng, and R. Wang: J. Iron Steel Res., 2012, vol. 24, pp. 40-44.
14.
Zurück zum Zitat D. S. Eppelsheimer, and R. R. Penman: Physica, 1950, vol. 16, pp. 792-94.CrossRef D. S. Eppelsheimer, and R. R. Penman: Physica, 1950, vol. 16, pp. 792-94.CrossRef
15.
Zurück zum Zitat H.Z. Qian, J.Q. Zhang, and L.X. Cui: J. Iron Steel Res., 2011, vol. 23, pp. 44–49, 62. H.Z. Qian, J.Q. Zhang, and L.X. Cui: J. Iron Steel Res., 2011, vol. 23, pp. 44–49, 62.
16.
Zurück zum Zitat M. Durand-Charre: Microstructure of Steels and Cast Irons, Springer, New York, NY, 2004, p. 271.CrossRef M. Durand-Charre: Microstructure of Steels and Cast Irons, Springer, New York, NY, 2004, p. 271.CrossRef
17.
Zurück zum Zitat X. Z. Zhang: Principles of Transfer in Metallurgy, Metallurgical Industry Press, Beijing, 1987, p. 433. X. Z. Zhang: Principles of Transfer in Metallurgy, Metallurgical Industry Press, Beijing, 1987, p. 433.
18.
Zurück zum Zitat F. Vodopivec, M. Torkar, M. Debelak, M. Kmetič, F. Haller, and F. Kaučič: Mater. Sci. Technol., 1988, vol. 4, pp. 917-25.CrossRef F. Vodopivec, M. Torkar, M. Debelak, M. Kmetič, F. Haller, and F. Kaučič: Mater. Sci. Technol., 1988, vol. 4, pp. 917-25.CrossRef
19.
Zurück zum Zitat Y. Maehara, K. Yasumoto, Y. Sugitani, and K. Gunji: Trans. ISIJ, 1985, vol. 25, pp. 1045-52.CrossRef Y. Maehara, K. Yasumoto, Y. Sugitani, and K. Gunji: Trans. ISIJ, 1985, vol. 25, pp. 1045-52.CrossRef
20.
Zurück zum Zitat B. Mintz, S. Yue, and J. J. Jonas: Int. Mater. Rev., 1991, vol. 36, pp. 187-220.CrossRef B. Mintz, S. Yue, and J. J. Jonas: Int. Mater. Rev., 1991, vol. 36, pp. 187-220.CrossRef
21.
Zurück zum Zitat V. H. Schumann: Neue Hütte, 1972, vol. 17, pp. 605-09. V. H. Schumann: Neue Hütte, 1972, vol. 17, pp. 605-09.
22.
Zurück zum Zitat Y. Meng, and B. G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34, pp. 685-705.CrossRef Y. Meng, and B. G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34, pp. 685-705.CrossRef
23.
Zurück zum Zitat B. Mintz, A. Tuling, and A. Delgado: Mater. Sci. Technol., 2003, vol. 19, pp. 1721-26.CrossRef B. Mintz, A. Tuling, and A. Delgado: Mater. Sci. Technol., 2003, vol. 19, pp. 1721-26.CrossRef
24.
Zurück zum Zitat B. Mintz, and D. N. Crowther: Int. Mater. Rev., 2010, vol. 55, pp. 168-96.CrossRef B. Mintz, and D. N. Crowther: Int. Mater. Rev., 2010, vol. 55, pp. 168-96.CrossRef
25.
Zurück zum Zitat H. Dong, and X. Sun: Curr. Opin. Solid State Mater. Sci., 2005, vol. 9, pp. 269-76.CrossRef H. Dong, and X. Sun: Curr. Opin. Solid State Mater. Sci., 2005, vol. 9, pp. 269-76.CrossRef
26.
Zurück zum Zitat H. Dong, X. J. Sun, and Y. Weng: Iron Steel, 2003, vol. 38, pp. 56–67. H. Dong, X. J. Sun, and Y. Weng: Iron Steel, 2003, vol. 38, pp. 56–67.
27.
Zurück zum Zitat S. C. Hong, S. H. Lim, K. J. Lee, D. H. Shin, and K. S. Lee: ISIJ Int., 2003, vol. 43, pp. 394-99.CrossRef S. C. Hong, S. H. Lim, K. J. Lee, D. H. Shin, and K. S. Lee: ISIJ Int., 2003, vol. 43, pp. 394-99.CrossRef
28.
Zurück zum Zitat P. J. Hurley, and P. D. Hodgson: Mater. Sci. Technol., 2001, vol. 17, pp. 1360-68.CrossRef P. J. Hurley, and P. D. Hodgson: Mater. Sci. Technol., 2001, vol. 17, pp. 1360-68.CrossRef
29.
Zurück zum Zitat B. Mintz, J. Lewis, and J. J. Jonas: Mater. Sci. Technol., 1997, vol. 13, pp. 379-88.CrossRef B. Mintz, J. Lewis, and J. J. Jonas: Mater. Sci. Technol., 1997, vol. 13, pp. 379-88.CrossRef
30.
Zurück zum Zitat J. K. Choi, D. H. Seo, J. S. Lee, K. K. Um, and W. Y. Choo: ISIJ Int., 2003, vol. 43, pp. 746-54.CrossRef J. K. Choi, D. H. Seo, J. S. Lee, K. K. Um, and W. Y. Choo: ISIJ Int., 2003, vol. 43, pp. 746-54.CrossRef
31.
Zurück zum Zitat Y. Q. Weng, X. J. Sun, and H. Dong: Iron Steel, 2005, vol. 40, pp. 9-15. Y. Q. Weng, X. J. Sun, and H. Dong: Iron Steel, 2005, vol. 40, pp. 9-15.
32.
Zurück zum Zitat W. J. Hui, P. Tian, H. Dong, S. H. Su, T. R. Yu, and Y. Q. Weng: Acta Metall. Sin., 2005, vol. 41, pp. 611-16. W. J. Hui, P. Tian, H. Dong, S. H. Su, T. R. Yu, and Y. Q. Weng: Acta Metall. Sin., 2005, vol. 41, pp. 611-16.
33.
Zurück zum Zitat B. G. Thomas, J. K. Brimacombe, and I. V. Samarasekera: Iron Steel Soc. Trans., 1986, vol. 7, pp. 7-20. B. G. Thomas, J. K. Brimacombe, and I. V. Samarasekera: Iron Steel Soc. Trans., 1986, vol. 7, pp. 7-20.
34.
Zurück zum Zitat Y. Maehara, K. Yasumoto, H. Tomono, T. Nagamichi, and Y. Ohmori: Mater. Sci. Technol., 1990, vol. 6, pp. 793-806.CrossRef Y. Maehara, K. Yasumoto, H. Tomono, T. Nagamichi, and Y. Ohmori: Mater. Sci. Technol., 1990, vol. 6, pp. 793-806.CrossRef
35.
Zurück zum Zitat E. T. Turkdogan: AIME Steelmaking Conf. Proc., 1987, vol. 70, pp. 399-409. E. T. Turkdogan: AIME Steelmaking Conf. Proc., 1987, vol. 70, pp. 399-409.
37.
38.
Zurück zum Zitat B. Mintz, and J. M. Arrowsmith: Met. Technol., 1979, vol. 6, pp. 24-32.CrossRef B. Mintz, and J. M. Arrowsmith: Met. Technol., 1979, vol. 6, pp. 24-32.CrossRef
39.
Zurück zum Zitat A. Tuling, J. R. Banerjee, and B. Mintz: Mater. Sci. Technol., 2011, vol. 27, pp. 1724-31. A. Tuling, J. R. Banerjee, and B. Mintz: Mater. Sci. Technol., 2011, vol. 27, pp. 1724-31.
40.
Zurück zum Zitat S. E. Kang, A. Tuling, J. R. Banerjee, W. D. Gunawardana, and B. Mintz: Mater. Sci. Technol., 2011, vol. 27, pp. 95-100.CrossRef S. E. Kang, A. Tuling, J. R. Banerjee, W. D. Gunawardana, and B. Mintz: Mater. Sci. Technol., 2011, vol. 27, pp. 95-100.CrossRef
41.
Zurück zum Zitat H. G. Suzuki, S. Nishimura, and S. Yamaguchi: Tetsu-to-Hagané, 1979, vol. 65, pp. 2038-46. H. G. Suzuki, S. Nishimura, and S. Yamaguchi: Tetsu-to-Hagané, 1979, vol. 65, pp. 2038-46.
42.
Zurück zum Zitat H. G. Suzuki, S. Nishimura, J. Imamura, and Y. Nakamura: Tetsu-to-Hagané, 1981, vol. 67, pp. 1180-89. H. G. Suzuki, S. Nishimura, J. Imamura, and Y. Nakamura: Tetsu-to-Hagané, 1981, vol. 67, pp. 1180-89.
43.
Zurück zum Zitat B. Mintz, and A. Cowley: Mater. Sci. Technol., 2006, vol. 22, pp. 279-92.CrossRef B. Mintz, and A. Cowley: Mater. Sci. Technol., 2006, vol. 22, pp. 279-92.CrossRef
44.
Zurück zum Zitat A. Cowley, and B. Mintz: Mater. Sci. Technol., 2004, vol. 20, pp. 1431-39.CrossRef A. Cowley, and B. Mintz: Mater. Sci. Technol., 2004, vol. 20, pp. 1431-39.CrossRef
45.
46.
Zurück zum Zitat B. Mintz, and J. R. Banerjee: Mater. Sci. Technol., 2010, vol. 26, pp. 547-51.CrossRef B. Mintz, and J. R. Banerjee: Mater. Sci. Technol., 2010, vol. 26, pp. 547-51.CrossRef
47.
Zurück zum Zitat B. Mintz, A. Cowley, and R. Abushosha: Mater. Sci. Technol., 2000, vol. 16, pp. 1-5.CrossRef B. Mintz, A. Cowley, and R. Abushosha: Mater. Sci. Technol., 2000, vol. 16, pp. 1-5.CrossRef
Metadaten
Titel
Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-C Steels
verfasst von
Jian Yang
Yu-Nan Wang
Xiao-Ming Ruan
Rui-Zhi Wang
Kai Zhu
Zheng-Jie Fan
Ying-Chun Wang
Cheng-Bin Li
Xiao-Fang Jiang
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 3/2015
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-015-0297-y

Weitere Artikel der Ausgabe 3/2015

Metallurgical and Materials Transactions B 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.