Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 2/2021

02.01.2021 | Original Research Article

Effects of Microstructural Morphology on Formability, Strain Localization, and Damage of Ferrite-Pearlite Steels: Experimental and Micromechanical Approaches

verfasst von: Samaneh Isavand, Ahmad Assempour

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper attempts to predict how the microstructural features and mechanical properties of the individual constituents affect the deformation behavior and formability of ferrite-pearlite steels under quasi-static loading at room temperature. For this purpose, finite element simulations using representative volume elements (RVEs) based on the real microstructures were implemented to model the flow behavior of the ferrite-pearlite steels with various microstructural morphologies (non-banded and banded). The homogenized flow curves obtained from the RVEs subjected to periodic boundary conditions together with displacement boundary conditions were validated with the experimental results of the uniaxial tensile tests. Then, the initial microstructural inhomogeneity and Johnson–Cook damage criteria were employed for both non-banded and banded RVEs to estimate the onset of plastic instability under different loading paths ranging from uniaxial tension to equi-biaxial tension. Finally, the forming limit diagrams of both ferritic-pearlitic microstructures were predicted, which show a good agreement with the experimental results of the Nakazima stretch-forming tests (less than 13 pct error). It implies that the initial microstructural inhomogeneity criterion adequately enables to predict the plastic instability in the ferritic-pearlitic steel sheets without using any damage or failure criterion. The most commonly observed damage mechanism is the severe plastic deformation of the ferrite grains near the pearlite colonies due to the strength contrast between ferrite and pearlite. Another significant finding is that the microstructural morphology has a crucial influence on the strain partitioning, strain localization, and formability of the ferritic-pearlitic steels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. K. D. H. Bhadeshia and R. W. K. Honeycombe: Steels: Microstructure and Properties, 4th ed., Butterworth-Heinemann, Oxford, 2017, pp. 59-100.CrossRef H. K. D. H. Bhadeshia and R. W. K. Honeycombe: Steels: Microstructure and Properties, 4th ed., Butterworth-Heinemann, Oxford, 2017, pp. 59-100.CrossRef
2.
Zurück zum Zitat W. D. Callister and D. G. Rethwisch: Materials Science and Engineering: An Introduction, 10th ed., John Wiley & Sons, New York, 2018, pp. 392-449. W. D. Callister and D. G. Rethwisch: Materials Science and Engineering: An Introduction, 10th ed., John Wiley & Sons, New York, 2018, pp. 392-449.
3.
Zurück zum Zitat G. J. Shiflet: Pearlite, Encyclopedia of Materials: Science and Technology, 1st ed., Elsevier, Amsterdam, 2001, pp. 6783-88.CrossRef G. J. Shiflet: Pearlite, Encyclopedia of Materials: Science and Technology, 1st ed., Elsevier, Amsterdam, 2001, pp. 6783-88.CrossRef
4.
5.
Zurück zum Zitat R. Großterlinden, R. Kawalla, U. Lotter and H. Pircher: Steel Res., 1992, vol. 63, pp. 331-36.CrossRef R. Großterlinden, R. Kawalla, U. Lotter and H. Pircher: Steel Res., 1992, vol. 63, pp. 331-36.CrossRef
6.
Zurück zum Zitat T. F. Majka, D. K. Matlock and G. Krauss: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1627–37.CrossRef T. F. Majka, D. K. Matlock and G. Krauss: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1627–37.CrossRef
7.
Zurück zum Zitat H. Farahani, W. Xu and S. van der Zwaag: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1998–2010.CrossRef H. Farahani, W. Xu and S. van der Zwaag: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1998–2010.CrossRef
8.
9.
Zurück zum Zitat S. E. Offerman, N. H. van Dijk, M. T. Rekveldt, J. Sietsma and S. van der Zwaag: Mater. Sci. Technol., 2002, vol. 18, pp. 297-303.CrossRef S. E. Offerman, N. H. van Dijk, M. T. Rekveldt, J. Sietsma and S. van der Zwaag: Mater. Sci. Technol., 2002, vol. 18, pp. 297-303.CrossRef
10.
Zurück zum Zitat X. Zhang, Y. Wang, J. Yang, Z. Qiao, C. Ren and C. Chen: Opt. Laser Eng., 2016, vol. 85, pp. 24-28.CrossRef X. Zhang, Y. Wang, J. Yang, Z. Qiao, C. Ren and C. Chen: Opt. Laser Eng., 2016, vol. 85, pp. 24-28.CrossRef
11.
Zurück zum Zitat D. Rèche, J. Besson, T. Sturel, X. Lemoine and A. F. Gourgues-Lorenzon: Int. J. Mech. Sci., 2012, vol. 57, pp. 43–53.CrossRef D. Rèche, J. Besson, T. Sturel, X. Lemoine and A. F. Gourgues-Lorenzon: Int. J. Mech. Sci., 2012, vol. 57, pp. 43–53.CrossRef
12.
Zurück zum Zitat D. Rèche, T. Sturel, O. Bouaziz, A. Col and A. F. Gourgues-Lorenzona: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5241-50.CrossRef D. Rèche, T. Sturel, O. Bouaziz, A. Col and A. F. Gourgues-Lorenzona: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5241-50.CrossRef
13.
Zurück zum Zitat A. J. Kaijalainen, P. Suikkanen, L. P. Karjalainen and J. J. Jonas: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1273-83.CrossRef A. J. Kaijalainen, P. Suikkanen, L. P. Karjalainen and J. J. Jonas: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1273-83.CrossRef
15.
Zurück zum Zitat G. Laschet, P. Fayek, T. Henke, H. Quade and U. Prahl: Mat. Sci. Eng. A, 2013, vol. 566, pp. 143-56.CrossRef G. Laschet, P. Fayek, T. Henke, H. Quade and U. Prahl: Mat. Sci. Eng. A, 2013, vol. 566, pp. 143-56.CrossRef
16.
Zurück zum Zitat R. Rodriguez and I. Gutierrez: Mater. Sci. Forum, 2003, Vols. 426-432, pp. 4525-30.CrossRef R. Rodriguez and I. Gutierrez: Mater. Sci. Forum, 2003, Vols. 426-432, pp. 4525-30.CrossRef
17.
Zurück zum Zitat I. Gutierrez: Metalurgija, 2012, vol. 11, pp. 201-14. I. Gutierrez: Metalurgija, 2012, vol. 11, pp. 201-14.
18.
Zurück zum Zitat B. Berisha, C. Raemy, C. Becker, M. Gorji and P. Hora: Acta Mater., 2015, vol. 100, pp. 191-201.CrossRef B. Berisha, C. Raemy, C. Becker, M. Gorji and P. Hora: Acta Mater., 2015, vol. 100, pp. 191-201.CrossRef
19.
Zurück zum Zitat L. Wang, D. Tang and Y. Song: Iron. Steel Res. Int., 2017, vol. 24, pp. 321-27.CrossRef L. Wang, D. Tang and Y. Song: Iron. Steel Res. Int., 2017, vol. 24, pp. 321-27.CrossRef
20.
Zurück zum Zitat [20] D. Banabic: Multiscale Modelling in Sheet Metal Forming, 1st ed., Springer, Switzerland, 2016, pp. 205-300.CrossRef [20] D. Banabic: Multiscale Modelling in Sheet Metal Forming, 1st ed., Springer, Switzerland, 2016, pp. 205-300.CrossRef
21.
Zurück zum Zitat H. Noori and R. Mahmudi: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2040–52.CrossRef H. Noori and R. Mahmudi: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2040–52.CrossRef
22.
Zurück zum Zitat E. M. Viatkina, W. A. M. Brekelmans and M. G. D. Geers: J. Mater. Process., 2005, vol. 168, pp. 211-18.CrossRef E. M. Viatkina, W. A. M. Brekelmans and M. G. D. Geers: J. Mater. Process., 2005, vol. 168, pp. 211-18.CrossRef
23.
Zurück zum Zitat H. P. Gänser, E. Werner and F. Fischer: Int. J. Mech. Sci., 2000, vol. 42, pp. 2041-54.CrossRef H. P. Gänser, E. Werner and F. Fischer: Int. J. Mech. Sci., 2000, vol. 42, pp. 2041-54.CrossRef
24.
Zurück zum Zitat R. Wesenjak, C. Krempaszky and E. Werner: Comput. Mater. Sci., 2016, vol. 111, pp. 277–88.CrossRef R. Wesenjak, C. Krempaszky and E. Werner: Comput. Mater. Sci., 2016, vol. 111, pp. 277–88.CrossRef
25.
Zurück zum Zitat X. Duan, M. Jain and D. S. Wilkinson: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3489-501.CrossRef X. Duan, M. Jain and D. S. Wilkinson: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3489-501.CrossRef
26.
Zurück zum Zitat V. Uthaisangsuk, U. Prahl and W. Bleck: Eng. Fract. Mech., 2011, vol. 78, pp. 469-86.CrossRef V. Uthaisangsuk, U. Prahl and W. Bleck: Eng. Fract. Mech., 2011, vol. 78, pp. 469-86.CrossRef
27.
Zurück zum Zitat W. M. Mohammed and E. N. M. A. Elbestawi: J. Manuf. Sci. Tec., 2012, vol. 5, pp. 87-101.CrossRef W. M. Mohammed and E. N. M. A. Elbestawi: J. Manuf. Sci. Tec., 2012, vol. 5, pp. 87-101.CrossRef
28.
Zurück zum Zitat Z. Li, R. Kiran, J. Hu, L. G. Hector Jr and A. F. Bower: Int. J. Fract., 2020, vol. 221, pp. 53–85.CrossRef Z. Li, R. Kiran, J. Hu, L. G. Hector Jr and A. F. Bower: Int. J. Fract., 2020, vol. 221, pp. 53–85.CrossRef
29.
30.
Zurück zum Zitat N. Ayachi, N. Guermazi, C. H. Pham and P. -Y. Manach: Metals, 2020, vol. 10, p. 1163.CrossRef N. Ayachi, N. Guermazi, C. H. Pham and P. -Y. Manach: Metals, 2020, vol. 10, p. 1163.CrossRef
31.
Zurück zum Zitat X. Hu, P. V. Houtte, M. Liebeherr, A. Walentek, M. Seefeldt and H. Vandekinderen: Acta Mater., 2006, vol. 54, pp. 1029-40.CrossRef X. Hu, P. V. Houtte, M. Liebeherr, A. Walentek, M. Seefeldt and H. Vandekinderen: Acta Mater., 2006, vol. 54, pp. 1029-40.CrossRef
32.
Zurück zum Zitat ASTM E112 – 13: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2013. ASTM E112 – 13: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2013.
33.
Zurück zum Zitat M. Hajian and A. Assempour: Int. J. Adv. Manuf. Technol., 2015, vol. 76, pp. 1757–67.CrossRef M. Hajian and A. Assempour: Int. J. Adv. Manuf. Technol., 2015, vol. 76, pp. 1757–67.CrossRef
34.
Zurück zum Zitat A. Ghazanfari and A. Assempour: Mater. Des., 2012, vol. 34, pp. 185–91.CrossRef A. Ghazanfari and A. Assempour: Mater. Des., 2012, vol. 34, pp. 185–91.CrossRef
35.
Zurück zum Zitat W. Choi, P. P. Gillis and S. E. Jones: Metall. Trans. A, 1989, vol. 20A, pp. 1975-88.CrossRef W. Choi, P. P. Gillis and S. E. Jones: Metall. Trans. A, 1989, vol. 20A, pp. 1975-88.CrossRef
37.
Zurück zum Zitat S. L. Omairey, P. D. Dunning and S. Sriramula: Eng.Comput., 2019, vol. 35, pp. 567–77.CrossRef S. L. Omairey, P. D. Dunning and S. Sriramula: Eng.Comput., 2019, vol. 35, pp. 567–77.CrossRef
38.
Zurück zum Zitat Z. Xia, Y. Zhang and F. Ellyin: Int. J. Solids Struct., 2003, vol. 40, pp. 1907-21.CrossRef Z. Xia, Y. Zhang and F. Ellyin: Int. J. Solids Struct., 2003, vol. 40, pp. 1907-21.CrossRef
39.
Zurück zum Zitat G. R. Johnson and W. H. Cook: Eng. Fract. Mech., 1985, vol. 21, pp. 31-48.CrossRef G. R. Johnson and W. H. Cook: Eng. Fract. Mech., 1985, vol. 21, pp. 31-48.CrossRef
40.
41.
Zurück zum Zitat G. H. Majzoobi and F. Rahimi-Dehgolan. Procedia Eng., 2011, 10: 764–73.CrossRef G. H. Majzoobi and F. Rahimi-Dehgolan. Procedia Eng., 2011, 10: 764–73.CrossRef
42.
Zurück zum Zitat M. Ohata, M. Suzuki, A. Ui and F. Minami: Eng. Fract. Mech., 2010, vol. 77, pp. 277-84.CrossRef M. Ohata, M. Suzuki, A. Ui and F. Minami: Eng. Fract. Mech., 2010, vol. 77, pp. 277-84.CrossRef
43.
Zurück zum Zitat Z. Marciniak and K. Kuczyński: Int. J. Mech. Sci., 1967, vol. 9, pp. 609-12.CrossRef Z. Marciniak and K. Kuczyński: Int. J. Mech. Sci., 1967, vol. 9, pp. 609-12.CrossRef
44.
Zurück zum Zitat L. Chuzhoy, R. E. DeVor, S. G. Kapoor and D. J. Bammann: J. Manuf. Sci. Eng., 2002, vol. 124, pp. 162-69.CrossRef L. Chuzhoy, R. E. DeVor, S. G. Kapoor and D. J. Bammann: J. Manuf. Sci. Eng., 2002, vol. 124, pp. 162-69.CrossRef
45.
Zurück zum Zitat G. Ljustina, M. Fagerström and R. Larsson: Eur. J. Mech. A-Solids, 2013, vol. 37, pp. 57-68.CrossRef G. Ljustina, M. Fagerström and R. Larsson: Eur. J. Mech. A-Solids, 2013, vol. 37, pp. 57-68.CrossRef
46.
47.
Zurück zum Zitat Z. Zhang and Y. Liao: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1621–28.CrossRef Z. Zhang and Y. Liao: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1621–28.CrossRef
48.
Zurück zum Zitat A. Ramazani, H. Quade, M. Abbasi and U. Prahl: Mat. Sci. Eng. A, 2016, vol. 651, pp. 160–64.CrossRef A. Ramazani, H. Quade, M. Abbasi and U. Prahl: Mat. Sci. Eng. A, 2016, vol. 651, pp. 160–64.CrossRef
49.
Zurück zum Zitat D. S. Connolly, C. P. Kohar, W. Muhammad, L. G. Hector Jr., R. K. Mishra and K. Inal: Int. J. Plast., 2020, vol. 133, p. 102757.CrossRef D. S. Connolly, C. P. Kohar, W. Muhammad, L. G. Hector Jr., R. K. Mishra and K. Inal: Int. J. Plast., 2020, vol. 133, p. 102757.CrossRef
Metadaten
Titel
Effects of Microstructural Morphology on Formability, Strain Localization, and Damage of Ferrite-Pearlite Steels: Experimental and Micromechanical Approaches
verfasst von
Samaneh Isavand
Ahmad Assempour
Publikationsdatum
02.01.2021
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 2/2021
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-06115-2

Weitere Artikel der Ausgabe 2/2021

Metallurgical and Materials Transactions A 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.