Skip to main content
Erschienen in: Journal of Polymer Research 12/2018

01.12.2018 | ORIGINAL PAPER

Effects of multiwall carbon nanotubes on the polymerization model of aniline

verfasst von: Mohsen Khodadadi Yazdi, Ghodratollah Hashemi Motlagh, Sadaf Saeedi Garakani, Ali Boroomand

Erschienen in: Journal of Polymer Research | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, chemical polymerization of aniline and aniline/multi-walled carbon nanotubes (MWCNTs) is investigated, and a modified polymerization model is proposed based on the obtained experimental results. In the experimental section, the variation in temperature of the reaction mixture was measured during the polymerization reaction. According to the obtained thermographs, it was concluded that the polymerization of aniline or aniline/MWCNTs takes place in three different steps. In the first step, some nuclei of phenazine-type trimers are formed for pure aniline while for aniline/MWCNTs, aniline molecules are adsorbed on the nanotubes surfaces. In the second step, cation-radical polymerization occurs at a high speed where there are a significant number of monomers around the growing chains. It is proposed that in the third step a new polymerization reaction begins on the pre-synthesized polymers. For pure PANI, it seems that only oligomers are created in this step while for PANI/MWCNTs, long chain polymers can also grow. Experimental results show that the enthalpy of polymerization reduces while polymerization yield increases with the weight percent of MWCNTs, which can be explained by the new observed polymerization model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wallace GG, Teasdale PR, Spinks GM, Kane-Maguire LA (2008) Conductive electroactive polymers: intelligent polymer systems. CRC press, FloridaCrossRef Wallace GG, Teasdale PR, Spinks GM, Kane-Maguire LA (2008) Conductive electroactive polymers: intelligent polymer systems. CRC press, FloridaCrossRef
2.
Zurück zum Zitat Potphode DD, Sivaraman P, Mishra SP, Patri M (2015) Polyaniline/partially exfoliated multi-walled carbon nanotubes based nanocomposites for supercapacitors. Electrochim Acta 155:402–410CrossRef Potphode DD, Sivaraman P, Mishra SP, Patri M (2015) Polyaniline/partially exfoliated multi-walled carbon nanotubes based nanocomposites for supercapacitors. Electrochim Acta 155:402–410CrossRef
3.
Zurück zum Zitat Ha J-S, Lee J-M, Lee H-R, Huh P, Jo N-J (2015) Polymer Nanocomposite Electrode Consisting of Polyaniline and Modified Multi-Walled Carbon Nanotube for Rechargeable Battery. J Nanosci Nanotechnol 15:8977–8983CrossRefPubMed Ha J-S, Lee J-M, Lee H-R, Huh P, Jo N-J (2015) Polymer Nanocomposite Electrode Consisting of Polyaniline and Modified Multi-Walled Carbon Nanotube for Rechargeable Battery. J Nanosci Nanotechnol 15:8977–8983CrossRefPubMed
4.
Zurück zum Zitat Kulkarni MV, Kale BB (2013) Studies of conducting polyaniline (PANI) wrapped-multiwalled carbon nanotubes (MWCNTs) nanocomposite and its application for optical pH sensing. Sensors Actuators B Chem 187:407–4012CrossRef Kulkarni MV, Kale BB (2013) Studies of conducting polyaniline (PANI) wrapped-multiwalled carbon nanotubes (MWCNTs) nanocomposite and its application for optical pH sensing. Sensors Actuators B Chem 187:407–4012CrossRef
5.
Zurück zum Zitat Kar P, Choudhury A (2013) Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors. Sensors Actuators B Chem 183:25–33CrossRef Kar P, Choudhury A (2013) Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors. Sensors Actuators B Chem 183:25–33CrossRef
6.
Zurück zum Zitat Konwer S, Begum A, Bordoloi S, Boruah R (2017) Expanded graphene-oxide encapsulated polyaniline composites as sensing material for volatile organic compounds. J Polym Res 24:37–47CrossRef Konwer S, Begum A, Bordoloi S, Boruah R (2017) Expanded graphene-oxide encapsulated polyaniline composites as sensing material for volatile organic compounds. J Polym Res 24:37–47CrossRef
7.
Zurück zum Zitat Yun J, Kim H-I (2012) Electromagnetic interference shielding effects of polyaniline-coated multi-wall carbon nanotubes/maghemite nanocomposites. Polym Bull 68:561–573CrossRef Yun J, Kim H-I (2012) Electromagnetic interference shielding effects of polyaniline-coated multi-wall carbon nanotubes/maghemite nanocomposites. Polym Bull 68:561–573CrossRef
8.
Zurück zum Zitat Jelmy EJ, Ramakrishnan S, Kothurkar NK (2016) EMI shielding and microwave absorption behavior of Au-MWCNT/polyaniline nanocomposites. Polym Adv Technol 27:1246–1257CrossRef Jelmy EJ, Ramakrishnan S, Kothurkar NK (2016) EMI shielding and microwave absorption behavior of Au-MWCNT/polyaniline nanocomposites. Polym Adv Technol 27:1246–1257CrossRef
9.
Zurück zum Zitat Deshpande P, Vathare S, Vagge S, Tomšík E, Stejskal J (2013) Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations. Chem Pap 67:1072–1078 Deshpande P, Vathare S, Vagge S, Tomšík E, Stejskal J (2013) Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations. Chem Pap 67:1072–1078
10.
Zurück zum Zitat Jafari Y, Ghoreishi SM, Shabani-Nooshabadi M (2016) Electrochemical deposition and characterization of polyaniline-graphene nanocomposite films and its corrosion protection properties. J Polym Res 23:91–104CrossRef Jafari Y, Ghoreishi SM, Shabani-Nooshabadi M (2016) Electrochemical deposition and characterization of polyaniline-graphene nanocomposite films and its corrosion protection properties. J Polym Res 23:91–104CrossRef
11.
Zurück zum Zitat Yun S, Freitas JN, Nogueira AF, Wang Y, Ahmad S, Wang Z-S (2016) Dye-sensitized solar cells employing polymers. Prog Polym Sci 50:1–40CrossRef Yun S, Freitas JN, Nogueira AF, Wang Y, Ahmad S, Wang Z-S (2016) Dye-sensitized solar cells employing polymers. Prog Polym Sci 50:1–40CrossRef
12.
Zurück zum Zitat Xiao Y, Lin J-Y, Wu J, Tai S-Y, Yue G, Lin T-W (2013) Dye-sensitized solar cells with high-performance polyaniline/multi-wall carbon nanotube counter electrodes electropolymerized by a pulse potentiostatic technique. J Power Sources 233:320–325CrossRef Xiao Y, Lin J-Y, Wu J, Tai S-Y, Yue G, Lin T-W (2013) Dye-sensitized solar cells with high-performance polyaniline/multi-wall carbon nanotube counter electrodes electropolymerized by a pulse potentiostatic technique. J Power Sources 233:320–325CrossRef
13.
Zurück zum Zitat Saranya K, Rameez M, Subramania A (2015) Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – An overview. Eur Polym J 66:207–227CrossRef Saranya K, Rameez M, Subramania A (2015) Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – An overview. Eur Polym J 66:207–227CrossRef
14.
Zurück zum Zitat Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810CrossRef Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810CrossRef
15.
Zurück zum Zitat Ćirić-Marjanović G (2013) Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth Met 177:1–47CrossRef Ćirić-Marjanović G (2013) Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth Met 177:1–47CrossRef
16.
Zurück zum Zitat Kazum O, Kannan MB (2013) Galvanostatic polymerisation of aniline on steel: Improving the coating performance in chloride-containing environment. Synth Met 180:54–58CrossRef Kazum O, Kannan MB (2013) Galvanostatic polymerisation of aniline on steel: Improving the coating performance in chloride-containing environment. Synth Met 180:54–58CrossRef
17.
Zurück zum Zitat Ding Y, Buyle Padias A, Hall H (1999) Chemical trapping experiments support a cation‐radical mechanism for the oxidative polymerization of aniline. J Polym Sci A 37:2569–2579CrossRef Ding Y, Buyle Padias A, Hall H (1999) Chemical trapping experiments support a cation‐radical mechanism for the oxidative polymerization of aniline. J Polym Sci A 37:2569–2579CrossRef
18.
Zurück zum Zitat Armes SP, Miller JF (1988) Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate. Synth Met 22:385–393CrossRef Armes SP, Miller JF (1988) Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate. Synth Met 22:385–393CrossRef
19.
Zurück zum Zitat Omastová M, Mosnáčková K, Trchová M, Konyushenko EN, Stejskal J, Fedorko P, Prokeš J (2010) Polypyrrole and polyaniline prepared with cerium(IV) sulfate oxidant. Synth Met 160:701–707CrossRef Omastová M, Mosnáčková K, Trchová M, Konyushenko EN, Stejskal J, Fedorko P, Prokeš J (2010) Polypyrrole and polyaniline prepared with cerium(IV) sulfate oxidant. Synth Met 160:701–707CrossRef
20.
Zurück zum Zitat Wang Y, Jing X, Kong J (2007) Polyaniline nanofibers prepared with hydrogen peroxide as oxidant. Synth Met 157:269–275CrossRef Wang Y, Jing X, Kong J (2007) Polyaniline nanofibers prepared with hydrogen peroxide as oxidant. Synth Met 157:269–275CrossRef
21.
Zurück zum Zitat Zhang L, Wan M, Wei Y (2006) Nanoscaled Polyaniline Fibers Prepared by Ferric Chloride as an Oxidant. Macromol Rapid Commun 27:366–371CrossRef Zhang L, Wan M, Wei Y (2006) Nanoscaled Polyaniline Fibers Prepared by Ferric Chloride as an Oxidant. Macromol Rapid Commun 27:366–371CrossRef
22.
Zurück zum Zitat Karami H, Jafari S, Goli F (2016). Int J Electrochem Sci 11:3056–3073CrossRef Karami H, Jafari S, Goli F (2016). Int J Electrochem Sci 11:3056–3073CrossRef
23.
Zurück zum Zitat Gupta V, Miura N (2005) Large-area network of polyaniline nanowires prepared by potentiostatic deposition process. Electrochem Commun 7:995–999CrossRef Gupta V, Miura N (2005) Large-area network of polyaniline nanowires prepared by potentiostatic deposition process. Electrochem Commun 7:995–999CrossRef
24.
Zurück zum Zitat Sazou D, Kourouzidou M, Pavlidou E (2007) Potentiodynamic and potentiostatic deposition of polyaniline on stainless steel: Electrochemical and structural studies for a potential application to corrosion control. Electrochim Acta 52:4385–4397CrossRef Sazou D, Kourouzidou M, Pavlidou E (2007) Potentiodynamic and potentiostatic deposition of polyaniline on stainless steel: Electrochemical and structural studies for a potential application to corrosion control. Electrochim Acta 52:4385–4397CrossRef
25.
Zurück zum Zitat Zotti G, Cattarin S, Comisso N (1988) Cyclic potential sweep electropolymerization of aniline: The role of anions in the polymerization mechanism. J Electroanal Chem Interfacial Electrochem 23:387–396CrossRef Zotti G, Cattarin S, Comisso N (1988) Cyclic potential sweep electropolymerization of aniline: The role of anions in the polymerization mechanism. J Electroanal Chem Interfacial Electrochem 23:387–396CrossRef
26.
Zurück zum Zitat Zotti G, Cattarin S, Comisso N (1987) Electrodeposition of polythiophene, polypyrrole and polyaniline by the cyclic potential sweep method. J Electroanal Chem Interfacial Electrochem 235:259–273CrossRef Zotti G, Cattarin S, Comisso N (1987) Electrodeposition of polythiophene, polypyrrole and polyaniline by the cyclic potential sweep method. J Electroanal Chem Interfacial Electrochem 235:259–273CrossRef
27.
Zurück zum Zitat Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Electrochemistry of Conducting Polymers—Persistent Models and New Concepts†. Chem Rev 110:4724–4771CrossRefPubMed Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Electrochemistry of Conducting Polymers—Persistent Models and New Concepts†. Chem Rev 110:4724–4771CrossRefPubMed
28.
Zurück zum Zitat Tzou K, Gregory RV (1992) Kinetic study of the chemical polymerization of aniline in aqueous solutions. Synth Met 47:267–277CrossRef Tzou K, Gregory RV (1992) Kinetic study of the chemical polymerization of aniline in aqueous solutions. Synth Met 47:267–277CrossRef
29.
Zurück zum Zitat Shim Y-B, Park S-M (1989) Electrochemistry of conductive polymers VII. Autocatalytic rate constant for polyaniline growth. Synth Met 29:169–174CrossRef Shim Y-B, Park S-M (1989) Electrochemistry of conductive polymers VII. Autocatalytic rate constant for polyaniline growth. Synth Met 29:169–174CrossRef
30.
Zurück zum Zitat Fu Y, Elsenbaumer RL (1994) Thermochemistry and Kinetics of Chemical Polymerization of Aniline Determined by Solution Calorimetry. Chem Mater 6:671–677CrossRef Fu Y, Elsenbaumer RL (1994) Thermochemistry and Kinetics of Chemical Polymerization of Aniline Determined by Solution Calorimetry. Chem Mater 6:671–677CrossRef
31.
Zurück zum Zitat Cavallo PC, Muñoz DJ, Miras MC, Barbero C, Acevedo DF (2014) Extracting kinetic parameters of aniline polymerization from thermal data of a batch reactor. simulation of the thermal behavior of a reactor. J Appl Polym Sci 131:39409CrossRef Cavallo PC, Muñoz DJ, Miras MC, Barbero C, Acevedo DF (2014) Extracting kinetic parameters of aniline polymerization from thermal data of a batch reactor. simulation of the thermal behavior of a reactor. J Appl Polym Sci 131:39409CrossRef
32.
Zurück zum Zitat Mezhuev YO, Korshak YV, Shtil’man MI (2015) A new concept of the kinetics and mechanism of the oxidative polymerization of aromatic amines. Russ J Phys Chem B 9:306–315CrossRef Mezhuev YO, Korshak YV, Shtil’man MI (2015) A new concept of the kinetics and mechanism of the oxidative polymerization of aromatic amines. Russ J Phys Chem B 9:306–315CrossRef
33.
Zurück zum Zitat Mezhuev YO, Korshak YV, Shtilman MI, Solov’eva IV (2014) Kinetic analysis of aniline polymerization considering the formation of a charge-transfer complex. Russ J Gen Chem 84:2445–2452CrossRef Mezhuev YO, Korshak YV, Shtilman MI, Solov’eva IV (2014) Kinetic analysis of aniline polymerization considering the formation of a charge-transfer complex. Russ J Gen Chem 84:2445–2452CrossRef
34.
Zurück zum Zitat Mezhuev YO, Korshak YV, Shtil’man MI (2016) Effect of poly(ethylene oxide) on the kinetics of oxidative polymerization of aniline. Russ J Gen Chem 86:2520–2525CrossRef Mezhuev YO, Korshak YV, Shtil’man MI (2016) Effect of poly(ethylene oxide) on the kinetics of oxidative polymerization of aniline. Russ J Gen Chem 86:2520–2525CrossRef
35.
Zurück zum Zitat Wei Y, Tang X, Sun Y, Focke WW (1989) A study of the mechanism of aniline polymerization. J Polym Sci A 27:2385–2396CrossRef Wei Y, Tang X, Sun Y, Focke WW (1989) A study of the mechanism of aniline polymerization. J Polym Sci A 27:2385–2396CrossRef
37.
Zurück zum Zitat Wei Y, Sun Y, Tang X (1989) Autoacceleration and kinetics of electrochemical polymerization of aniline. J Phys Chem 93:4878–4881CrossRef Wei Y, Sun Y, Tang X (1989) Autoacceleration and kinetics of electrochemical polymerization of aniline. J Phys Chem 93:4878–4881CrossRef
38.
Zurück zum Zitat Mezhuev YO, Korshak YV, Shtilman MI, Pokhil SE, Strakhov IS (2015) Kinetic features of N-ethylaniline polymerization. Russ J Gen Chem 85:1482–1486CrossRef Mezhuev YO, Korshak YV, Shtilman MI, Pokhil SE, Strakhov IS (2015) Kinetic features of N-ethylaniline polymerization. Russ J Gen Chem 85:1482–1486CrossRef
39.
Zurück zum Zitat Strakhov YS, Mezhuev YO, Korshak YV, Stilman MI (2016) Kinetics and mechanism of oxidative polymerization of phenylenediamines. Russ J Gen Chem 86:2682–2688CrossRef Strakhov YS, Mezhuev YO, Korshak YV, Stilman MI (2016) Kinetics and mechanism of oxidative polymerization of phenylenediamines. Russ J Gen Chem 86:2682–2688CrossRef
40.
Zurück zum Zitat Mezhuev YO, Korshak YV, Shtil’man MI, Brudz’ SP, Pokhil SE, Firer AA, Strakhov IS (2015) The Competition between Processes of Oxidative Polymerisation of 2-Methoxyaniline and Oxidative Degradation of Poly-(2-Methoxyaniline). Int Polymer Sci Tech 42:21-24CrossRef Mezhuev YO, Korshak YV, Shtil’man MI, Brudz’ SP, Pokhil SE, Firer AA, Strakhov IS (2015) The Competition between Processes of Oxidative Polymerisation of 2-Methoxyaniline and Oxidative Degradation of Poly-(2-Methoxyaniline). Int Polymer Sci Tech 42:21-24CrossRef
41.
Zurück zum Zitat Mezhuev YO, Korshak YV, Shtilman MI, Strakhov IS (2014) Kinetics and Mechanism of the Chemical Oxidative Polymerization of P-Semidine. Theor Exp Chem 50:331–334CrossRef Mezhuev YO, Korshak YV, Shtilman MI, Strakhov IS (2014) Kinetics and Mechanism of the Chemical Oxidative Polymerization of P-Semidine. Theor Exp Chem 50:331–334CrossRef
42.
Zurück zum Zitat Feng W, Bai XD, Lian YQ, Liang J, Wang XG, Yoshino K (2003) Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon 41:1551–1557CrossRef Feng W, Bai XD, Lian YQ, Liang J, Wang XG, Yoshino K (2003) Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon 41:1551–1557CrossRef
43.
Zurück zum Zitat Konyushenko E, Stejskal J, Trchová M, Hradil J, Kovářová J, Prokeš J, Cieslar M, Hwang JY, Chen KH, Sapurina I (2006) Multi-wall carbon nanotubes coated with polyaniline. Polymer 47:5715–5723CrossRef Konyushenko E, Stejskal J, Trchová M, Hradil J, Kovářová J, Prokeš J, Cieslar M, Hwang JY, Chen KH, Sapurina I (2006) Multi-wall carbon nanotubes coated with polyaniline. Polymer 47:5715–5723CrossRef
44.
Zurück zum Zitat Liu P, Liu W, Xue Q (2004) In situ chemical oxidative graft polymerization of aniline from silica nanoparticles. Mater Chem Phys 87:109–113CrossRef Liu P, Liu W, Xue Q (2004) In situ chemical oxidative graft polymerization of aniline from silica nanoparticles. Mater Chem Phys 87:109–113CrossRef
45.
Zurück zum Zitat Kim BS, Lee KT, Huh PH, Lee DH, Jo NJ, Lee JO (2009) In situ template polymerization of aniline on the surface of negatively charged TiO2 nanoparticles. Synth Met 159:1369–1372CrossRef Kim BS, Lee KT, Huh PH, Lee DH, Jo NJ, Lee JO (2009) In situ template polymerization of aniline on the surface of negatively charged TiO2 nanoparticles. Synth Met 159:1369–1372CrossRef
46.
Zurück zum Zitat Bhadra S, Lee JH (2009) Synthesis of higher soluble nanostructured polyaniline by vapor-phase polymerization and determination of its crystal structure. J Appl Polym Sci 114:331–340CrossRef Bhadra S, Lee JH (2009) Synthesis of higher soluble nanostructured polyaniline by vapor-phase polymerization and determination of its crystal structure. J Appl Polym Sci 114:331–340CrossRef
47.
Zurück zum Zitat Shishov M, Moshnikov V, Sapurina I (2013) Self-organization of polyaniline during oxidative polymerization: formation of granular structure. Chem Pap 67:909–918CrossRef Shishov M, Moshnikov V, Sapurina I (2013) Self-organization of polyaniline during oxidative polymerization: formation of granular structure. Chem Pap 67:909–918CrossRef
48.
Zurück zum Zitat Stejskal J, Sapurina I, Trchová M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481CrossRef Stejskal J, Sapurina I, Trchová M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481CrossRef
49.
Zurück zum Zitat Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym In 57:1295–1325 Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym In 57:1295–1325
50.
Zurück zum Zitat Sapurina I, Tenkovtsev AV, Stejskal J (2015) Conjugated polyaniline as a result of the benzidine rearrangement. Polym Int 64:453–465CrossRef Sapurina I, Tenkovtsev AV, Stejskal J (2015) Conjugated polyaniline as a result of the benzidine rearrangement. Polym Int 64:453–465CrossRef
51.
Zurück zum Zitat Sapurina I, Shishov MA (2012) In: Gomes AD (ed) New Polymers for Special Applications, InTech Sapurina I, Shishov MA (2012) In: Gomes AD (ed) New Polymers for Special Applications, InTech
52.
Zurück zum Zitat Peles-Lemli B, Matisz G, Kelterer AM, Fabian WM, Kunsági-Máté S (2010) Noncovalent Interaction between Aniline and Carbon Nanotubes: Effect of Nanotube Diameter and the Hydrogen-Bonded Solvent Methanol on the Adsorption Energy and the Photophysics. J Phys Chem C 114:5898–5905CrossRef Peles-Lemli B, Matisz G, Kelterer AM, Fabian WM, Kunsági-Máté S (2010) Noncovalent Interaction between Aniline and Carbon Nanotubes: Effect of Nanotube Diameter and the Hydrogen-Bonded Solvent Methanol on the Adsorption Energy and the Photophysics. J Phys Chem C 114:5898–5905CrossRef
53.
Zurück zum Zitat Maurer RJ, Sax AF (2010) Solvation of carbon nanotubes by aniline calculated with density functional tight binding. Phys Chem Chem Phys 12:9893–9899CrossRefPubMed Maurer RJ, Sax AF (2010) Solvation of carbon nanotubes by aniline calculated with density functional tight binding. Phys Chem Chem Phys 12:9893–9899CrossRefPubMed
54.
Zurück zum Zitat Duong NH (2011) In: Yellampalli S (ed) Carbon Nanotubes - Synthesis, Characterization, Applications, InTech Duong NH (2011) In: Yellampalli S (ed) Carbon Nanotubes - Synthesis, Characterization, Applications, InTech
55.
Zurück zum Zitat Ramana GV, Padya B, Srikanth VV, Jain PK, Padmanabham G, Sundararajan G (2011) Electrically conductive carbon nanopipe-graphite nanosheet/polyaniline composites. Carbon 49:5239–5245CrossRef Ramana GV, Padya B, Srikanth VV, Jain PK, Padmanabham G, Sundararajan G (2011) Electrically conductive carbon nanopipe-graphite nanosheet/polyaniline composites. Carbon 49:5239–5245CrossRef
56.
Zurück zum Zitat Wu D, Wu L, Sun Y, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ε-caprolactone) composites. J Polym Sci B Polym Phys 45:3137–3147CrossRef Wu D, Wu L, Sun Y, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ε-caprolactone) composites. J Polym Sci B Polym Phys 45:3137–3147CrossRef
57.
Zurück zum Zitat Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) Nucleation of Polypropylene Crystallization by Single-Walled Carbon Nanotubes. J Phys Chem B 106:5852–5858CrossRef Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) Nucleation of Polypropylene Crystallization by Single-Walled Carbon Nanotubes. J Phys Chem B 106:5852–5858CrossRef
Metadaten
Titel
Effects of multiwall carbon nanotubes on the polymerization model of aniline
verfasst von
Mohsen Khodadadi Yazdi
Ghodratollah Hashemi Motlagh
Sadaf Saeedi Garakani
Ali Boroomand
Publikationsdatum
01.12.2018
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 12/2018
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-018-1655-7

Weitere Artikel der Ausgabe 12/2018

Journal of Polymer Research 12/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.