Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 2/2020

07.12.2019

Effects of nickel-doping on the microstructure and electrochemical performances of electrospun Li3V2(PO4)3/C fiber membrane cathode

verfasst von: Li-li Chen, Mao-xiang Jing, Chong Han, Hua Yang, Fei Chen, Hao Chen, Bo-wei Ju, Fei-yue Tu, Xiang-qian Shen

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metal ion-doping and fibrosis treatment are important ways to improve the conductivity of lithium vanadium phosphate (Li3V2(PO4)3) electrode materials. However, the traditional casting preparation method could reduce the electronic and ionic conductivities of Li3V2(PO4)3 electrodes. In this work, the nickel (Ni)-doped Li3V2(PO4)3/C nanofiber membrane with a three-dimensional network structure was prepared by an electrospinning technique, which was directly used for self-standing cathodes in lithium-ion batteries. The effects of Ni-doping on the morphology, structure, and electrochemical properties of Li3V2(PO4)3/C nanofiber membrane were studied. The results show that the Ni-doping not only changes the crystal structure and morphology of Li3V2(PO4)3/C fibers, but also affects the electrochemical performances of the Li3V2(PO4)3/C electrodes. 1‰ Ni-doping has slightest effect on the crystal structure compared with other ratios, and the catalytic effect of Ni nanoparticles makes Li3V2(PO4)3/C grow directionally to form a hybrid membrane containing Li3V2(PO4)3/C nanofibers and Li3V2(PO4)3/C nanowires. The hybrid membrane electrode possesses good electrochemical performances at the current densities of 1C and 5C owing to the long-range continuous electron conductive networks, high porosity to favor the electrolyte permeation and Li-ion transport, and stable integrated-electrode structure to enhance the redox reaction. This self-standing Li3V2(PO4)3/C nanofiber membrane cathode is expected to be used in high-energy lithium-ion batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat H. Lee, S. Kim, K.-B. Kim, J.W. Choi, Scalable fabrication of flexible thin-film batteries for smart lens applications. Nano Energy 53, 225–231 (2018)CrossRef H. Lee, S. Kim, K.-B. Kim, J.W. Choi, Scalable fabrication of flexible thin-film batteries for smart lens applications. Nano Energy 53, 225–231 (2018)CrossRef
2.
Zurück zum Zitat Y. Liu, X. Fan, Z. Zhang, H.H. Wu, D. Liu, A. Dou, M. Su, Q. Zhang, D. Chu, Enhanced electrochemical performance of Li-rich layered cathode materials by combined Cr doping and LiAlO2 coating. ACS Sustain. Chem. Eng. 7(2), 2225–2235 (2019)CrossRef Y. Liu, X. Fan, Z. Zhang, H.H. Wu, D. Liu, A. Dou, M. Su, Q. Zhang, D. Chu, Enhanced electrochemical performance of Li-rich layered cathode materials by combined Cr doping and LiAlO2 coating. ACS Sustain. Chem. Eng. 7(2), 2225–2235 (2019)CrossRef
3.
Zurück zum Zitat L. Li, M. Xu, Q. Yao, Z. Chen, L. Song, Z. Zhang, C. Gao, P. Wang, Z. Yu, Y. Lai, Alleviating surface degradation of Nickel-rich layered oxide cathode material by encapsulating with nanoscale Li-ions/electrons superionic conductors hybrid membrane for advanced Li-ion batteries. ACS Appl. Mater. Interfaces 8(45), 30879–30889 (2016)CrossRef L. Li, M. Xu, Q. Yao, Z. Chen, L. Song, Z. Zhang, C. Gao, P. Wang, Z. Yu, Y. Lai, Alleviating surface degradation of Nickel-rich layered oxide cathode material by encapsulating with nanoscale Li-ions/electrons superionic conductors hybrid membrane for advanced Li-ion batteries. ACS Appl. Mater. Interfaces 8(45), 30879–30889 (2016)CrossRef
4.
Zurück zum Zitat M. Sun, X. Han, S. Chen, Nano-Li3V2(PO4)3@C particles embedded in reduced graphene oxide sheets as cathode materials for high-performance lithium-ion batteries. Solid State Ionics 323, 166–171 (2018)CrossRef M. Sun, X. Han, S. Chen, Nano-Li3V2(PO4)3@C particles embedded in reduced graphene oxide sheets as cathode materials for high-performance lithium-ion batteries. Solid State Ionics 323, 166–171 (2018)CrossRef
5.
Zurück zum Zitat Y. Li, J. Wang, Z. Zhou, J. Deng, Q. Yao, H. Chu, Z. Wang, L. Sun, H. Zhou, Large-scale synthesis of porous Li3V2(PO4)3@C/AB hollow microspheres with interconnected channel as high performance cathodes for lithium-ion batteries. J. Alloys Compd. 774, 879–886 (2019)CrossRef Y. Li, J. Wang, Z. Zhou, J. Deng, Q. Yao, H. Chu, Z. Wang, L. Sun, H. Zhou, Large-scale synthesis of porous Li3V2(PO4)3@C/AB hollow microspheres with interconnected channel as high performance cathodes for lithium-ion batteries. J. Alloys Compd. 774, 879–886 (2019)CrossRef
6.
Zurück zum Zitat J. Su, X.L. Wu, J.S. Lee, J. Kim, Y.G. Guo, A carbon-coated Li3V2(PO4)3 cathode material with an enhanced high-rate capability and long lifespan for lithium-ion batteries. J. Mater. Chem. A 1(7), 2508–2514 (2013)CrossRef J. Su, X.L. Wu, J.S. Lee, J. Kim, Y.G. Guo, A carbon-coated Li3V2(PO4)3 cathode material with an enhanced high-rate capability and long lifespan for lithium-ion batteries. J. Mater. Chem. A 1(7), 2508–2514 (2013)CrossRef
7.
Zurück zum Zitat Q. Kuang, Y. Zhao, X. An, J. Liu, Y. Dong, L. Chen, Synthesis and electrochemical properties of co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. Electrochim. Acta 55(5), 1575–1581 (2010)CrossRef Q. Kuang, Y. Zhao, X. An, J. Liu, Y. Dong, L. Chen, Synthesis and electrochemical properties of co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. Electrochim. Acta 55(5), 1575–1581 (2010)CrossRef
8.
Zurück zum Zitat J.S. Park, J. Kim, W.B. Park, Y.K. Sun, S.T. Myung, Effect of Mn in Li3V2-xMnx(PO4)3 as high capacity cathodes for lithium batteries. ACS Appl. Mater. Interfaces 9(46), 40307–40316 (2017)CrossRef J.S. Park, J. Kim, W.B. Park, Y.K. Sun, S.T. Myung, Effect of Mn in Li3V2-xMnx(PO4)3 as high capacity cathodes for lithium batteries. ACS Appl. Mater. Interfaces 9(46), 40307–40316 (2017)CrossRef
9.
Zurück zum Zitat X.K. Ding, T. Li, L.L. Zhang, X.L. Yang, G. Liang, J.Q. Wang, Enhanced rate capability and cycling life of nickel modified Li3V2(PO4)3 cathode material. Ceram. Int. 44(7), 8145–8154 (2018)CrossRef X.K. Ding, T. Li, L.L. Zhang, X.L. Yang, G. Liang, J.Q. Wang, Enhanced rate capability and cycling life of nickel modified Li3V2(PO4)3 cathode material. Ceram. Int. 44(7), 8145–8154 (2018)CrossRef
10.
Zurück zum Zitat S. Kim, Z. Zhang, S. Wang, L. Yang, J.E. Penner-Hahn, A. Deb, Electrochemical and structural investigation of mg-doped Li3V(2-2x/3)Mgx(PO4)3. J. Power Sources 396, 491–497 (2018)CrossRef S. Kim, Z. Zhang, S. Wang, L. Yang, J.E. Penner-Hahn, A. Deb, Electrochemical and structural investigation of mg-doped Li3V(2-2x/3)Mgx(PO4)3. J. Power Sources 396, 491–497 (2018)CrossRef
11.
Zurück zum Zitat X. Yan, L. Xin, H. Wang, C. Cao, S. Sun, Synergetic effect of na-doping and carbon coating on the electrochemical performances of Li3-xNaxV2(PO4)3/C as cathode for lithium-ion batteries. RSC Adv. 9(15), 8222–8229 (2019)CrossRef X. Yan, L. Xin, H. Wang, C. Cao, S. Sun, Synergetic effect of na-doping and carbon coating on the electrochemical performances of Li3-xNaxV2(PO4)3/C as cathode for lithium-ion batteries. RSC Adv. 9(15), 8222–8229 (2019)CrossRef
12.
Zurück zum Zitat Z. Zou, Hydrothermal synthesis of flower-like Fe-doped VO2(B) with enhanced lithium ion storage performance. Int. J. Electrochem. Sci. 2018, 8127–8136 (2018)CrossRef Z. Zou, Hydrothermal synthesis of flower-like Fe-doped VO2(B) with enhanced lithium ion storage performance. Int. J. Electrochem. Sci. 2018, 8127–8136 (2018)CrossRef
13.
Zurück zum Zitat H. Wang, L. Li, S. Wang, X. Liu, L. Li, Fabrication of metal-doped hierarchical trimodal porous Li3V2(PO4)3/C composites with enhanced electrochemical performances for lithium-ion batteries. Metall. Mater. Trans. A 50(3), 1468–1479 (2019)CrossRef H. Wang, L. Li, S. Wang, X. Liu, L. Li, Fabrication of metal-doped hierarchical trimodal porous Li3V2(PO4)3/C composites with enhanced electrochemical performances for lithium-ion batteries. Metall. Mater. Trans. A 50(3), 1468–1479 (2019)CrossRef
14.
Zurück zum Zitat D. Ai, K. Liu, Z. Lu, M. Zou, D. Zeng, J. Ma, Aluminothermal synthesis and characterization of Li3V2-xAlx(PO4)3 cathode materials for lithium ion batteries. Electrochim. Acta 56(7), 2823–2827 (2011)CrossRef D. Ai, K. Liu, Z. Lu, M. Zou, D. Zeng, J. Ma, Aluminothermal synthesis and characterization of Li3V2-xAlx(PO4)3 cathode materials for lithium ion batteries. Electrochim. Acta 56(7), 2823–2827 (2011)CrossRef
15.
Zurück zum Zitat J. Tong, Y. Fang, Enhanced lithium storage capability of Li3V2(PO4)3@C co-modified with graphene and Ce3+ doping as high-power cathode for lithium-ion batteries. J. Phys. Chem. Solids 111, 349–354 (2017)CrossRef J. Tong, Y. Fang, Enhanced lithium storage capability of Li3V2(PO4)3@C co-modified with graphene and Ce3+ doping as high-power cathode for lithium-ion batteries. J. Phys. Chem. Solids 111, 349–354 (2017)CrossRef
16.
Zurück zum Zitat X.W. Wang, D.X. Pei, T. Xue, F.H. Li, Z.H. Ma, Effect of ba doping on electrochemical performance of Li3V2(PO4)3/C cathode materials for Li ion batteries. Ferroelectrics 523(1), 146–152 (2018)CrossRef X.W. Wang, D.X. Pei, T. Xue, F.H. Li, Z.H. Ma, Effect of ba doping on electrochemical performance of Li3V2(PO4)3/C cathode materials for Li ion batteries. Ferroelectrics 523(1), 146–152 (2018)CrossRef
17.
Zurück zum Zitat W. Yuan, J. Yan, Z. Tang, O. Sha, J. Wang, W. Mao, L. Ma, Mo-doped Li3V2(PO4)3/C cathode material with high rate capability and long term cyclic stability. Electrochim. Acta 72, 138–142 (2012)CrossRef W. Yuan, J. Yan, Z. Tang, O. Sha, J. Wang, W. Mao, L. Ma, Mo-doped Li3V2(PO4)3/C cathode material with high rate capability and long term cyclic stability. Electrochim. Acta 72, 138–142 (2012)CrossRef
18.
Zurück zum Zitat M. Ren, Z. Zhou, Y. Li, X.P. Gao, J. Yan, Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J. Power Sources 162(2), 1357–1362 (2006)CrossRef M. Ren, Z. Zhou, Y. Li, X.P. Gao, J. Yan, Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J. Power Sources 162(2), 1357–1362 (2006)CrossRef
19.
Zurück zum Zitat Q. Chen, X. Qiao, Y. Wang, T. Zhang, C. Peng, W. Yin, L. Liu, Electrochemical performance of Li3-xNaxV2(PO4)3/C composite cathode materials for lithium ion batteries. J. Power Sources 201, 267–273 (2012)CrossRef Q. Chen, X. Qiao, Y. Wang, T. Zhang, C. Peng, W. Yin, L. Liu, Electrochemical performance of Li3-xNaxV2(PO4)3/C composite cathode materials for lithium ion batteries. J. Power Sources 201, 267–273 (2012)CrossRef
20.
Zurück zum Zitat J. Wang, S. Zheng, M. Hojamberdiev, B. Ren, Y. Xu, C. Shao, Effect of Ni doping on electrochemical performance of Li3V2(PO4)3/C cathode material prepared by polyol process. Ceram. Int. 40, 11251–11259 (2014)CrossRef J. Wang, S. Zheng, M. Hojamberdiev, B. Ren, Y. Xu, C. Shao, Effect of Ni doping on electrochemical performance of Li3V2(PO4)3/C cathode material prepared by polyol process. Ceram. Int. 40, 11251–11259 (2014)CrossRef
21.
Zurück zum Zitat Z. Pan, L. Yao, J. Liu, X. Liu, F. Pi, J. Chen, B. Shen, J. Zhai, Superior discharge energy density and efficiency in polymer nanocomposites induced by linear dielectric core–shell nanofibers. J. Mater. Chem. C 7, 405–413 (2019)CrossRef Z. Pan, L. Yao, J. Liu, X. Liu, F. Pi, J. Chen, B. Shen, J. Zhai, Superior discharge energy density and efficiency in polymer nanocomposites induced by linear dielectric core–shell nanofibers. J. Mater. Chem. C 7, 405–413 (2019)CrossRef
22.
Zurück zum Zitat J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019)CrossRef J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019)CrossRef
23.
Zurück zum Zitat Z.C. Pi, M.X. Jing, J.Q. Li, H.A. Zhai, L.L. Chen, S.S. Yao, X.Q. Shen, X.M. Xi, K.S. Xiao, Lithium vanadium phosphate/carbon nanofiber films as selfstanding, binderfree, and flexible cathodes for lithium-ion batteries. Energy Technol. 4(9), 1047–1052 (2016)CrossRef Z.C. Pi, M.X. Jing, J.Q. Li, H.A. Zhai, L.L. Chen, S.S. Yao, X.Q. Shen, X.M. Xi, K.S. Xiao, Lithium vanadium phosphate/carbon nanofiber films as selfstanding, binderfree, and flexible cathodes for lithium-ion batteries. Energy Technol. 4(9), 1047–1052 (2016)CrossRef
24.
Zurück zum Zitat J. Zhu, L. Chen, Z. Xu, B. Lu, Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries. Nano Energy 12, 339–346 (2015)CrossRef J. Zhu, L. Chen, Z. Xu, B. Lu, Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries. Nano Energy 12, 339–346 (2015)CrossRef
25.
Zurück zum Zitat R.A. Hernandez-Carrillo, N.A. Garcia-Gomez, D.I. Garcia-Gutierrez, L.L. Garza-Tovar, E.M. Sanchez, Synthesis and characterization of electrospun iron-doped lithium titanate/carbon nanofiber mats. J. Mater. Sci. Mater. Electron. 26(6), 4241–4249 (2015)CrossRef R.A. Hernandez-Carrillo, N.A. Garcia-Gomez, D.I. Garcia-Gutierrez, L.L. Garza-Tovar, E.M. Sanchez, Synthesis and characterization of electrospun iron-doped lithium titanate/carbon nanofiber mats. J. Mater. Sci. Mater. Electron. 26(6), 4241–4249 (2015)CrossRef
26.
Zurück zum Zitat X. Lu, C. Wang, F. Favier, N. Pinna, Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Adv. Energy Mater. 7(2), 1601301 (2017)CrossRef X. Lu, C. Wang, F. Favier, N. Pinna, Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Adv. Energy Mater. 7(2), 1601301 (2017)CrossRef
27.
Zurück zum Zitat Q. Chen, T. Zhang, X. Qiao, D. Li, J. Yang, Li3V2(PO4)3/C nanofibers composite as a high performance cathode material for lithium-ion battery. J. Power Sources 234, 197–200 (2013)CrossRef Q. Chen, T. Zhang, X. Qiao, D. Li, J. Yang, Li3V2(PO4)3/C nanofibers composite as a high performance cathode material for lithium-ion battery. J. Power Sources 234, 197–200 (2013)CrossRef
28.
Zurück zum Zitat J.Q. Li, M.X. Jing, C. Han, S.S. Yao, H.A. Zhai, L.L. Chen, X.Q. Shen, K.S. Xiao, A 3D heterogeneous FeTiO3/TiO2@C fiber membrane as a self-standing anode for power Li-ion battery. Appl. Phys. A 124(4), 332 (2018)CrossRef J.Q. Li, M.X. Jing, C. Han, S.S. Yao, H.A. Zhai, L.L. Chen, X.Q. Shen, K.S. Xiao, A 3D heterogeneous FeTiO3/TiO2@C fiber membrane as a self-standing anode for power Li-ion battery. Appl. Phys. A 124(4), 332 (2018)CrossRef
29.
Zurück zum Zitat L.L. Chen, X.Q. Shen, M.X. Jing, S.W. Zhu, Z.C. Pi, J.Q. Li, H.A. Zhai, K.S. Xiao, Electrospun LiFePO4/C composite fiber membrane as a binder-free, self-standing cathode for power lithium-ion battery. J. Nanosci. Nanotechnol. 18(7), 4720–4727 (2018)CrossRef L.L. Chen, X.Q. Shen, M.X. Jing, S.W. Zhu, Z.C. Pi, J.Q. Li, H.A. Zhai, K.S. Xiao, Electrospun LiFePO4/C composite fiber membrane as a binder-free, self-standing cathode for power lithium-ion battery. J. Nanosci. Nanotechnol. 18(7), 4720–4727 (2018)CrossRef
30.
Zurück zum Zitat M.X. Jing, J.Q. Li, Z.C. Pi, H.A. Zhai, L.L. Chen, S.S. Yao, J. Xiang, X.Q. Shen, X.M. Xi, K.S. Xiao, Electrospinning fabrication and enhanced performance of 3D Li3V2(PO4)3/C fiber membrane as self-standing cathodes for Li-ion battery. Electrochim. Acta 212, 898–904 (2016)CrossRef M.X. Jing, J.Q. Li, Z.C. Pi, H.A. Zhai, L.L. Chen, S.S. Yao, J. Xiang, X.Q. Shen, X.M. Xi, K.S. Xiao, Electrospinning fabrication and enhanced performance of 3D Li3V2(PO4)3/C fiber membrane as self-standing cathodes for Li-ion battery. Electrochim. Acta 212, 898–904 (2016)CrossRef
31.
Zurück zum Zitat M.X. Jing, Z.C. Pi, H.A. Zhai, J.Q. Li, L.L. Chen, X.Q. Shen, X.M. Xi, K.S. Xiao, Three-dimensional Li3V2(PO4)3/C nanowire and nanofiber hybrid membrane as a self-standing, binder-free cathode for lithium ion batteries. RSC Adv. 6(75), 71574–71580 (2016)CrossRef M.X. Jing, Z.C. Pi, H.A. Zhai, J.Q. Li, L.L. Chen, X.Q. Shen, X.M. Xi, K.S. Xiao, Three-dimensional Li3V2(PO4)3/C nanowire and nanofiber hybrid membrane as a self-standing, binder-free cathode for lithium ion batteries. RSC Adv. 6(75), 71574–71580 (2016)CrossRef
32.
Zurück zum Zitat Y. Chen, X. Li, K. Park, J. Song, J. Hong, L. Zhou, Y.-W. Mai, H. Huang, J.B. Goodenough, Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J. Am. Chem. Soc. 135(44), 16280–16283 (2013)CrossRef Y. Chen, X. Li, K. Park, J. Song, J. Hong, L. Zhou, Y.-W. Mai, H. Huang, J.B. Goodenough, Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J. Am. Chem. Soc. 135(44), 16280–16283 (2013)CrossRef
33.
Zurück zum Zitat D.R. Sørensen, J.K. Mathiesen, D.B. Ravnsbæk, Dynamic charge-discharge phase transitions in Li3V2(PO4)3 cathodes. J. Power Sources 396, 437–443 (2018)CrossRef D.R. Sørensen, J.K. Mathiesen, D.B. Ravnsbæk, Dynamic charge-discharge phase transitions in Li3V2(PO4)3 cathodes. J. Power Sources 396, 437–443 (2018)CrossRef
34.
Zurück zum Zitat R. Zheng, S. Qian, X. Cheng, H. Yu, N. Peng, T. Liu, J. Zhang, M. Xia, H. Zhu, J. Shu, FeNb11O29 nanotubes: superior electrochemical energy storage performance and operating mechanism. Nano Energy 58, 399–409 (2019)CrossRef R. Zheng, S. Qian, X. Cheng, H. Yu, N. Peng, T. Liu, J. Zhang, M. Xia, H. Zhu, J. Shu, FeNb11O29 nanotubes: superior electrochemical energy storage performance and operating mechanism. Nano Energy 58, 399–409 (2019)CrossRef
35.
Zurück zum Zitat J. Chen, X. Yu, Y. Fan, Z. Duan, Y. Jiang, F. Yang, Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution. J. Mater. Sci. Mater. Electron. 28, 18200–18206 (2017)CrossRef J. Chen, X. Yu, Y. Fan, Z. Duan, Y. Jiang, F. Yang, Enhanced the breakdown strength and energy density in flexible composite films via optimizing electric field distribution. J. Mater. Sci. Mater. Electron. 28, 18200–18206 (2017)CrossRef
Metadaten
Titel
Effects of nickel-doping on the microstructure and electrochemical performances of electrospun Li3V2(PO4)3/C fiber membrane cathode
verfasst von
Li-li Chen
Mao-xiang Jing
Chong Han
Hua Yang
Fei Chen
Hao Chen
Bo-wei Ju
Fei-yue Tu
Xiang-qian Shen
Publikationsdatum
07.12.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 2/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02625-x

Weitere Artikel der Ausgabe 2/2020

Journal of Materials Science: Materials in Electronics 2/2020 Zur Ausgabe

Neuer Inhalt