Skip to main content
Erschienen in: Journal of Materials Science 19/2019

25.06.2019 | Energy materials

Effects of precursor composition on morphology and microstructure of hybrid organic–inorganic perovskite solar cells

verfasst von: Chung-Hsin Lu, Guan-Rong Chen, Mei-Tsan Kuo

Erschienen in: Journal of Materials Science | Ausgabe 19/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of compositions on the crystalline structures, microstructures and optical characteristics of perovskite CH3NH3PbI3 films were investigated via varying the molar ratios of CH3NH3I (MAI) to PbI2 in the precursor solutions. As the amounts of MAI were increased in the precursor solution, the formation of CH3NH3PbI3 was facilitated, and the grain sizes as well as absorbance of the resulting films were increased. The enlarged grain of the prepared films effectively suppressed the carrier recombination at grain boundary and improved the electrical performance of the fabricated solar cells. The analysis of diode parameters also revealed that the additional shunt path was suppressed. On the other hand, once the molar ratio of MAI to PbI2 was further increased, the roughness of film surface was increased and caused the carrier recombination between absorber layers and hole-transport layers, thereby resulting in a dramatic decrease in conversion efficiency. This investigation indicated that controlling the compositions in the precursors of CH3NH3PbI3 films is crucial to improve the photovoltaic properties of perovskite solar cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
3.
Zurück zum Zitat Yan K, Long M, Zhang T, Wei Z, Chen H, Yang S, Xu J (2015) Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J Am Chem Soc 137:4460–4468CrossRef Yan K, Long M, Zhang T, Wei Z, Chen H, Yang S, Xu J (2015) Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J Am Chem Soc 137:4460–4468CrossRef
4.
Zurück zum Zitat Yang M, Li Z, Reese MO, Reid OG, Kim DH, Siol S, Klein TR, Yan Y, Berry JJ, van Hest MFAM, Zhu K (2017) Perovskite ink with wide processing window for scalable high efficiency solar cells. Nat Energy 2:17038CrossRef Yang M, Li Z, Reese MO, Reid OG, Kim DH, Siol S, Klein TR, Yan Y, Berry JJ, van Hest MFAM, Zhu K (2017) Perovskite ink with wide processing window for scalable high efficiency solar cells. Nat Energy 2:17038CrossRef
5.
Zurück zum Zitat Manser JS, Reid B, Kamat PV (2015) Evolution of organic–inorganic lead halide perovskite from solid-state iodoplumbate complexes. J Phys Chem C 119:17065–17073CrossRef Manser JS, Reid B, Kamat PV (2015) Evolution of organic–inorganic lead halide perovskite from solid-state iodoplumbate complexes. J Phys Chem C 119:17065–17073CrossRef
6.
Zurück zum Zitat Huang W, Manser JS, Kamat PV, Ptasinska S (2016) Evolution of chemical composition, morphology, and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions. Chem Mater 28:303–311CrossRef Huang W, Manser JS, Kamat PV, Ptasinska S (2016) Evolution of chemical composition, morphology, and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions. Chem Mater 28:303–311CrossRef
7.
Zurück zum Zitat Park BW et al (2018) Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat Commun 9:3301CrossRef Park BW et al (2018) Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat Commun 9:3301CrossRef
8.
Zurück zum Zitat Hieulle J et al (2019) Unraveling the impact of halide mixing on perovskite stability. J Am Chem Soc 141:3515–3523CrossRef Hieulle J et al (2019) Unraveling the impact of halide mixing on perovskite stability. J Am Chem Soc 141:3515–3523CrossRef
9.
Zurück zum Zitat Liang Z, Bi Z, Gao K, Fu Y, Guan P, Feng X, Chai Z, Xu G, Xu X (2019) Interface modification via Al2O3 with retarded charge recombinations for mesoscopic perovskite solar cells fabricated with spray deposition process in the air. Appl Surf Sci 463:939–946CrossRef Liang Z, Bi Z, Gao K, Fu Y, Guan P, Feng X, Chai Z, Xu G, Xu X (2019) Interface modification via Al2O3 with retarded charge recombinations for mesoscopic perovskite solar cells fabricated with spray deposition process in the air. Appl Surf Sci 463:939–946CrossRef
10.
Zurück zum Zitat Rong Y, Hu Y, Mei A, Tan H, Saidaminov MI, Seok SI, McGehee MD, Sargent EH, Han H (2018) Challenges for commercializing perovskite solar cells. Science 361:8235CrossRef Rong Y, Hu Y, Mei A, Tan H, Saidaminov MI, Seok SI, McGehee MD, Sargent EH, Han H (2018) Challenges for commercializing perovskite solar cells. Science 361:8235CrossRef
11.
Zurück zum Zitat Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp KW, Kramer IJ, Ning Z, Labelle AJ, Chou KW, Amassian A, Sargent EH (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7:577–582CrossRef Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp KW, Kramer IJ, Ning Z, Labelle AJ, Chou KW, Amassian A, Sargent EH (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7:577–582CrossRef
12.
Zurück zum Zitat Li W, Furlan A, Hendriks KH, Wienk MM, Janssen RAJ (2013) Efficient tandem and triple-junction polymer solar cells. J Am Ceram Soc 135:5529–5532 Li W, Furlan A, Hendriks KH, Wienk MM, Janssen RAJ (2013) Efficient tandem and triple-junction polymer solar cells. J Am Ceram Soc 135:5529–5532
13.
Zurück zum Zitat Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni WL, Li YZ, He G, Li C, Kan B, Li M, Chen Y (2013) Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J Am Ceram Soc 135:8484–8487 Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni WL, Li YZ, He G, Li C, Kan B, Li M, Chen Y (2013) Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J Am Ceram Soc 135:8484–8487
14.
Zurück zum Zitat Van der Poll TS, Love JA, Nguyen TQ, Bazan GC (2012) Non-basic high-performance molecules for solution-processed organic solar cells. J Adv Mater 24:3646–3649CrossRef Van der Poll TS, Love JA, Nguyen TQ, Bazan GC (2012) Non-basic high-performance molecules for solution-processed organic solar cells. J Adv Mater 24:3646–3649CrossRef
15.
Zurück zum Zitat Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI (2014) Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 13(9):897–903CrossRef Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI (2014) Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 13(9):897–903CrossRef
16.
Zurück zum Zitat Kagan CR, Mitzi DB, Dimitrakopoulos CD (1999) Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286:945–947CrossRef Kagan CR, Mitzi DB, Dimitrakopoulos CD (1999) Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286:945–947CrossRef
17.
Zurück zum Zitat Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJJ (2013) Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344CrossRef Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJJ (2013) Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344CrossRef
18.
Zurück zum Zitat Xing GM, Mathews N, Sun SY, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342:344–347CrossRef Xing GM, Mathews N, Sun SY, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342:344–347CrossRef
19.
Zurück zum Zitat Shin SS, Yeom EJ, Yang WS, Hur S, Kim MG, Im J, Seo J, Noh JH, Seok SI (2017) Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356:167–171CrossRef Shin SS, Yeom EJ, Yang WS, Hur S, Kim MG, Im J, Seo J, Noh JH, Seok SI (2017) Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356:167–171CrossRef
20.
Zurück zum Zitat Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319CrossRef Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319CrossRef
21.
Zurück zum Zitat Chen Q, Zhou H, Song TB, Luo S, Hong Z, Duan HS, Dou L, Liu Y, Yang Y (2014) Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett 14(7):4158–4163CrossRef Chen Q, Zhou H, Song TB, Luo S, Hong Z, Duan HS, Dou L, Liu Y, Yang Y (2014) Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett 14(7):4158–4163CrossRef
22.
Zurück zum Zitat Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398CrossRef Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398CrossRef
23.
Zurück zum Zitat Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok S (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13:897–903CrossRef Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok S (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13:897–903CrossRef
24.
Zurück zum Zitat Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng YB, Spiccia L (2014) A fast deposition-crystallization procedure for highly efficient leadiodide perovskite thin-film solar cells. Angew Chem Int Ed 53:9898–9903CrossRef Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng YB, Spiccia L (2014) A fast deposition-crystallization procedure for highly efficient leadiodide perovskite thin-film solar cells. Angew Chem Int Ed 53:9898–9903CrossRef
25.
Zurück zum Zitat Ahn N, Son DY, Jang IH, Kang SM, Choi M, Park NG (2015) Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. J. Am. Chem. Soc., 137 (27), 8696–8699 Ahn N, Son DY, Jang IH, Kang SM, Choi M, Park NG (2015) Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. J. Am. Chem. Soc., 137 (27), 8696–8699
26.
Zurück zum Zitat Saliba M, Matsui T, Seo JY, Domanski K, Baena JP, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldtd A, Grätzela M (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989–1997CrossRef Saliba M, Matsui T, Seo JY, Domanski K, Baena JP, Nazeeruddin MK, Zakeeruddin SM, Tress W, Abate A, Hagfeldtd A, Grätzela M (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989–1997CrossRef
27.
Zurück zum Zitat Kim BG, Jang W, Cho JS, Wang DH (2019) Tailoring solubility of methylammonium lead halide with non-stoichiometry molar ratio in perovskite solar cells: morphological and electrical relationships for high current generation. Solar Energy Mater Solar Cells 192:24–35CrossRef Kim BG, Jang W, Cho JS, Wang DH (2019) Tailoring solubility of methylammonium lead halide with non-stoichiometry molar ratio in perovskite solar cells: morphological and electrical relationships for high current generation. Solar Energy Mater Solar Cells 192:24–35CrossRef
28.
Zurück zum Zitat Zhao Y, Liu J, Lu X, Gao Y, You X, Xu X (2015) Improving the efficiency of perovskite solar cells through optimization of the CH3NH3PbI3 film growth in solution process method. Appl Surf Sci 359:560–566CrossRef Zhao Y, Liu J, Lu X, Gao Y, You X, Xu X (2015) Improving the efficiency of perovskite solar cells through optimization of the CH3NH3PbI3 film growth in solution process method. Appl Surf Sci 359:560–566CrossRef
29.
Zurück zum Zitat Assadia MK, Bakhodaa S, Saidurb R, Hanaeia H (2018) Recent progress in perovskite solar cells. Renew Sustain Energy Rev 81:2812–2822CrossRef Assadia MK, Bakhodaa S, Saidurb R, Hanaeia H (2018) Recent progress in perovskite solar cells. Renew Sustain Energy Rev 81:2812–2822CrossRef
30.
Zurück zum Zitat Baikie T et al (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1:5628–5641CrossRef Baikie T et al (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1:5628–5641CrossRef
31.
Zurück zum Zitat Kojima A, Ikegami M, Teshima K, Miyasaka T (2012) Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media. Chem Lett 41:397–399CrossRef Kojima A, Ikegami M, Teshima K, Miyasaka T (2012) Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media. Chem Lett 41:397–399CrossRef
32.
Zurück zum Zitat Yan K, Long M, Zhang T, Wei Z, Chen H, Yang S, Xu J (2015) Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J Am Chem Soc 137:4460–4468CrossRef Yan K, Long M, Zhang T, Wei Z, Chen H, Yang S, Xu J (2015) Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J Am Chem Soc 137:4460–4468CrossRef
33.
Zurück zum Zitat Zhou Y, Game OS, Pang S, Padture NP (2015) Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. J Phys Chem Lett 6(23):4827–4839CrossRef Zhou Y, Game OS, Pang S, Padture NP (2015) Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. J Phys Chem Lett 6(23):4827–4839CrossRef
34.
Zurück zum Zitat Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J (2015) Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat Commun 6:7747CrossRef Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J (2015) Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat Commun 6:7747CrossRef
35.
Zurück zum Zitat Marchioro A et al (2014) Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat Photon 8:250–255CrossRef Marchioro A et al (2014) Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat Photon 8:250–255CrossRef
37.
Zurück zum Zitat Poota M, Tangb HX (2014) Broadband nanoelectromechanical phase shifting of light on a chip Appl. Phys Lett 104:061101 Poota M, Tangb HX (2014) Broadband nanoelectromechanical phase shifting of light on a chip Appl. Phys Lett 104:061101
38.
Zurück zum Zitat You J et al (2014) Moisture assisted perovskite film growth for high performance solar cells. Appl Phys Lett 105:183902CrossRef You J et al (2014) Moisture assisted perovskite film growth for high performance solar cells. Appl Phys Lett 105:183902CrossRef
Metadaten
Titel
Effects of precursor composition on morphology and microstructure of hybrid organic–inorganic perovskite solar cells
verfasst von
Chung-Hsin Lu
Guan-Rong Chen
Mei-Tsan Kuo
Publikationsdatum
25.06.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03766-4

Weitere Artikel der Ausgabe 19/2019

Journal of Materials Science 19/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.