Skip to main content
Erschienen in: Journal of Electronic Materials 4/2021

23.01.2021 | Original Research Article

Effects of RF Magnetron Sputtering Deposition Power on Crystallinity and Thermoelectric Properties of Antimony Telluride and Bismuth Telluride Thin Films on Flexible Substrates

verfasst von: Farbod Amirghasemi, Sam Kassegne

Erschienen in: Journal of Electronic Materials | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermoelectric materials carry significant promise for self-powering future generations of unattended microdevices and wearable devices. The current increased interest in such devices highlights the need for research to provide understanding of the basic material properties of thermoelectric materials, specifically in thin-film form, deposited on flexible polymer substrates. In this study, the surface topography, crystalline structure, and electrical properties of sputtered thin films of two of the most common thermoelectric materials, i.e., antimony telluride (Sb2Te3) and bismuth telluride (Bi2Te3), supported on silicon and polymer substrates were investigated. The study focuses on determining the effect of the sputtering power and underlying substrate on the crystal structure formation as well as grain size of the resulting thin film. Radiofrequency (RF) magnetron sputtering with power levels from 50 W to 200 W was used to deposit these layers on several test structures. The results demonstrate that increasing the RF sputtering power resulted in (i) an increase in the crystalline size (from 0.48 nm to 29.66 nm for Sb2Te3 and from 10.60 nm to 20.29 nm for Bi2Te3), (ii) a significant increase in the content of tellurium (Te) in the Sb2Te3 and Bi2Te3 thin films, (iii) an order-of-magnitude increase in the electrical conductivity of the Bi2Te3 thin film fabricated on silicon wafer, and (iv) a 150% increase in the Seebeck coefficient for both Bi2Te3 and Sb2Te3 samples. Furthermore, surface roughness analysis showed that deposition on polyimide substrate modestly increased the surface roughness (Ra), from 6.59 nm to 9.91 nm for Bi2Te3 and from 12.46 nm to 15.41 nm for Sb2Te3. The electrical resistivity of Bi2Te3 thin films on polyimide was found to be 2.72 × 10−3 Ω m, compared with 1.58 × 10−3 Ω m on silicon substrate, while for Sb2Te3,, the electrical resistivity on polyimide substrate increased to 580 × 10−3 Ω m as compared with 145 × 10−3 Ω m on silicon substrate. Taken together, the results of this work demonstrate that the use of high deposition power during RF sputtering of Sb2Te3 and Bi2Te3 thin films results in significant improvements in their crystallinity, conductivity, and Seebeck coefficient, which are key material properties of great importance for thermoelectric materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
4.
Zurück zum Zitat C.S. Kim, H.M. Yang, J. Lee, G.S. Lee, H. Choi, Y.J. Kim, S.H. Lim, S.H. Cho, and B.J. Cho, ACS Energy Lett. 3, 501 (2018).CrossRef C.S. Kim, H.M. Yang, J. Lee, G.S. Lee, H. Choi, Y.J. Kim, S.H. Lim, S.H. Cho, and B.J. Cho, ACS Energy Lett. 3, 501 (2018).CrossRef
5.
6.
Zurück zum Zitat Y. Liao, H. Yao, A. Lingley, B. Parviz, and B.P. Otis, IEEE J. Solid-State Circuits 47, 335 (2012).CrossRef Y. Liao, H. Yao, A. Lingley, B. Parviz, and B.P. Otis, IEEE J. Solid-State Circuits 47, 335 (2012).CrossRef
7.
Zurück zum Zitat D.P. Rose, M.E. Ratterman, D.K. Griffin, L. Hou, N. Kelley-Loughnane, R.R. Naik, J.A. Hagen, I. Papautsky, and J.C. Heikenfeld, IEEE Trans. Biomed. Eng. 62, 1457 (2014).CrossRef D.P. Rose, M.E. Ratterman, D.K. Griffin, L. Hou, N. Kelley-Loughnane, R.R. Naik, J.A. Hagen, I. Papautsky, and J.C. Heikenfeld, IEEE Trans. Biomed. Eng. 62, 1457 (2014).CrossRef
9.
Zurück zum Zitat K. Singkaselit, A. Sakulkalavek, and R. Sakdanuphab, Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 035002 (2017).CrossRef K. Singkaselit, A. Sakulkalavek, and R. Sakdanuphab, Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 035002 (2017).CrossRef
10.
Zurück zum Zitat J.-H. Kim, J.-Y. Choi, J.-M. Bae, M.-Y. Kim, and T.-S. Oh, Mater. Trans. 54, 618 (2013).CrossRef J.-H. Kim, J.-Y. Choi, J.-M. Bae, M.-Y. Kim, and T.-S. Oh, Mater. Trans. 54, 618 (2013).CrossRef
11.
Zurück zum Zitat F. Yang, S. Zheng, H. Wang, W. Chu, and Y. Dong, J. Micromech. Microeng. 27, 055005 (2017).CrossRef F. Yang, S. Zheng, H. Wang, W. Chu, and Y. Dong, J. Micromech. Microeng. 27, 055005 (2017).CrossRef
12.
Zurück zum Zitat A. Al-Bayaz, A. Giani, M. Artaud, A. Foucaran, F. Pascal-Delannoy, and A. Boyer, J. Cryst. Growth 241, 463 (2002).CrossRef A. Al-Bayaz, A. Giani, M. Artaud, A. Foucaran, F. Pascal-Delannoy, and A. Boyer, J. Cryst. Growth 241, 463 (2002).CrossRef
13.
Zurück zum Zitat C. W. Lee, G. H. Kim, J. W. Choi, K. S. An, J. S. Kim, H. Kim, and Y. K. Lee, Physica Status Solidi (RRL)–Rapid Res. Lett. 11, 1700029 (2017). C. W. Lee, G. H. Kim, J. W. Choi, K. S. An, J. S. Kim, H. Kim, and Y. K. Lee, Physica Status Solidi (RRL)–Rapid Res. Lett. 11, 1700029 (2017).
14.
Zurück zum Zitat S. Golia, M. Arora, R. Sharma, and A. Rastogi, Curr. Appl. Phys. 3, 195 (2003).CrossRef S. Golia, M. Arora, R. Sharma, and A. Rastogi, Curr. Appl. Phys. 3, 195 (2003).CrossRef
15.
Zurück zum Zitat P. Fourmont, L.F. Gerlein, F.-X. Fortier, S.G. Cloutier, and R. Nechache, ACS Appl. Mater. Interfaces 10, 10194 (2018).CrossRef P. Fourmont, L.F. Gerlein, F.-X. Fortier, S.G. Cloutier, and R. Nechache, ACS Appl. Mater. Interfaces 10, 10194 (2018).CrossRef
16.
Zurück zum Zitat Z. Cao, M.J. Tudor, R.N. Torah, and S.P. Beeby, IEEE Trans. Electron Devices 63, 4024 (2016).CrossRef Z. Cao, M.J. Tudor, R.N. Torah, and S.P. Beeby, IEEE Trans. Electron Devices 63, 4024 (2016).CrossRef
17.
Zurück zum Zitat H. Huang, W.-L. Luan, and S.-T. Tu, Thin Solid Films 517, 3731 (2009).CrossRef H. Huang, W.-L. Luan, and S.-T. Tu, Thin Solid Films 517, 3731 (2009).CrossRef
18.
Zurück zum Zitat P. Nuthongkum, R. Sakdanuphab, M. Horprathum, and A. Sakulkalavek, J. Electron. Mater. 46, 6444 (2017).CrossRef P. Nuthongkum, R. Sakdanuphab, M. Horprathum, and A. Sakulkalavek, J. Electron. Mater. 46, 6444 (2017).CrossRef
19.
Zurück zum Zitat S. Shen, W. Zhu, Y. Deng, H. Zhao, Y. Peng, and C. Wang, Appl. Surf. Sci. 414, 197 (2017).CrossRef S. Shen, W. Zhu, Y. Deng, H. Zhao, Y. Peng, and C. Wang, Appl. Surf. Sci. 414, 197 (2017).CrossRef
20.
Zurück zum Zitat D.-H. Kim, E. Byon, G.-H. Lee, and S. Cho, Thin Solid Films 510, 148 (2006).CrossRef D.-H. Kim, E. Byon, G.-H. Lee, and S. Cho, Thin Solid Films 510, 148 (2006).CrossRef
21.
22.
Zurück zum Zitat S. Nimbalkar, E. Castagnola, A. Balasubramani, A. Scarpellini, S. Samejima, A. Khorasani, A. Boissenin, S. Thongpang, C. Moritz, and S. Kassegne, Sci. Rep. 8, 6958 (2018).CrossRef S. Nimbalkar, E. Castagnola, A. Balasubramani, A. Scarpellini, S. Samejima, A. Khorasani, A. Boissenin, S. Thongpang, C. Moritz, and S. Kassegne, Sci. Rep. 8, 6958 (2018).CrossRef
23.
Zurück zum Zitat S.W. Shaner, J.K. Allen, M. Felderman, E.T. Pasko, C.D. Wimer, N.D. Cosford, S. Kassegne, and P. Teriete, AIP Adv. 9, 065313 (2019).CrossRef S.W. Shaner, J.K. Allen, M. Felderman, E.T. Pasko, C.D. Wimer, N.D. Cosford, S. Kassegne, and P. Teriete, AIP Adv. 9, 065313 (2019).CrossRef
24.
Zurück zum Zitat V. Russo, A. Bailini, M. Zamboni, M. Passoni, C. Conti, C.S. Casari, A. Li Bassi, and C.E. Bottani, J. Raman Spectrosc. 39, 205 (2008).CrossRef V. Russo, A. Bailini, M. Zamboni, M. Passoni, C. Conti, C.S. Casari, A. Li Bassi, and C.E. Bottani, J. Raman Spectrosc. 39, 205 (2008).CrossRef
25.
26.
Zurück zum Zitat N. Hatsuta, D. Takemori, and M. Takashiri, J. Alloys Compd. 685, 147 (2016).CrossRef N. Hatsuta, D. Takemori, and M. Takashiri, J. Alloys Compd. 685, 147 (2016).CrossRef
27.
Zurück zum Zitat J.-M. Lin, Y.-C. Chen, and W. Chen, J. Nanomater. 16, 225 (2015). J.-M. Lin, Y.-C. Chen, and W. Chen, J. Nanomater. 16, 225 (2015).
28.
Zurück zum Zitat J.-M. Lin, Y.-C. Chen, and C.-P. Lin, J. Nanomater. 2013, 1 (2013). J.-M. Lin, Y.-C. Chen, and C.-P. Lin, J. Nanomater. 2013, 1 (2013).
29.
Zurück zum Zitat E.M.F. Vieira, J. Figueira, A.L. Pires, J. Grilo, M.F. Silva, A.M. Pereira, and L.M. Goncalves, J. Alloys Compd. 774, 1102 (2019).CrossRef E.M.F. Vieira, J. Figueira, A.L. Pires, J. Grilo, M.F. Silva, A.M. Pereira, and L.M. Goncalves, J. Alloys Compd. 774, 1102 (2019).CrossRef
30.
Zurück zum Zitat M. Goto, M. Sasaki, Y. Xu, T. Zhan, Y. Isoda, and Y. Shinohara, Appl. Surf. Sci. 407, 405 (2017).CrossRef M. Goto, M. Sasaki, Y. Xu, T. Zhan, Y. Isoda, and Y. Shinohara, Appl. Surf. Sci. 407, 405 (2017).CrossRef
31.
Zurück zum Zitat Y.-J. Wu, S.-C. Hsu, Y.-C. Lin, Y. Xu, T.-H. Chuang, and S.-C. Chen, Surf. Coat. Technol., 125694 (2020). Y.-J. Wu, S.-C. Hsu, Y.-C. Lin, Y. Xu, T.-H. Chuang, and S.-C. Chen, Surf. Coat. Technol., 125694 (2020).
32.
Zurück zum Zitat S. Cho, Y. Kim, A. DiVenere, G.K. Wong, J.B. Ketterson, and J.R. Meyer, Appl. Phys. Lett. 75, 1401 (1999).CrossRef S. Cho, Y. Kim, A. DiVenere, G.K. Wong, J.B. Ketterson, and J.R. Meyer, Appl. Phys. Lett. 75, 1401 (1999).CrossRef
33.
Zurück zum Zitat Z.-K. Cai, P. Fan, Z.-H. Zheng, P.-J. Liu, T.-B. Chen, X.-M. Cai, J.-T. Luo, G.-X. Liang, and D.-P. Zhang, Appl. Surf. Sci. 280, 225 (2013).CrossRef Z.-K. Cai, P. Fan, Z.-H. Zheng, P.-J. Liu, T.-B. Chen, X.-M. Cai, J.-T. Luo, G.-X. Liang, and D.-P. Zhang, Appl. Surf. Sci. 280, 225 (2013).CrossRef
34.
Zurück zum Zitat S.R. Sridhara, M. DiRenzo, S. Lingam, S.-J. Lee, R. Blazquez, J. Maxey, S. Ghanem, Y.-H. Lee, R. Abdallah, and P. Singh, IEEE J. Solid-State Circuits 46, 721 (2011).CrossRef S.R. Sridhara, M. DiRenzo, S. Lingam, S.-J. Lee, R. Blazquez, J. Maxey, S. Ghanem, Y.-H. Lee, R. Abdallah, and P. Singh, IEEE J. Solid-State Circuits 46, 721 (2011).CrossRef
35.
Zurück zum Zitat S. Jo, M. Kim, M. Kim, and Y.-J. Kim, Electron. Lett. 48, 1015 (2012).CrossRef S. Jo, M. Kim, M. Kim, and Y.-J. Kim, Electron. Lett. 48, 1015 (2012).CrossRef
Metadaten
Titel
Effects of RF Magnetron Sputtering Deposition Power on Crystallinity and Thermoelectric Properties of Antimony Telluride and Bismuth Telluride Thin Films on Flexible Substrates
verfasst von
Farbod Amirghasemi
Sam Kassegne
Publikationsdatum
23.01.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 4/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08681-y

Weitere Artikel der Ausgabe 4/2021

Journal of Electronic Materials 4/2021 Zur Ausgabe

Neuer Inhalt