Skip to main content
Erschienen in:

31.10.2022 | Technical Article

Effects of Rolling-Cryogenic Process on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets

verfasst von: Jialong Zhang, Liwei Lu, Bo Che, Min Ma, Zhiqiang Wu, Tao Zhou, Hua Zhang, Fugang Qi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 14/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to improve the microstructure of AZ31 magnesium alloy sheets and enhance their comprehensive mechanical properties, the effects of cryogenic treatment on the microstructure and mechanical properties after hot-rolled AZ31 magnesium alloy were investigated in this paper by combining different rolling reduction with cryogenic treatment. The results show that fine dynamic recrystallization grains appear at the original grain boundaries, and the grain becomes fine and uniform after rolling and deformation. After cryogenic treatment of the hot-rolled sheets, the grains are further significantly refined, the size tends to be homogeneous, the second phase is precipitated along the grain boundaries, and a small amount of twins are produced. In addition, after 20-min cryogenic treatment, the plasticity of the rolled sheets with 30% reduction was greatly improved, and the elongation at break was up to 14.2%, which was 55% higher than that of the original sheet; its hardness and tensile strength were increased from 64.4 HV and 230 MPa of the original sheet to 76.6 HV and 286 MPa, respectively, which shows that the cryogenic treatment of the hot-rolled sheets could effectively improve mechanical properties. This study provides some theoretical guidance and technical support for the processing and manufacturing of high-performance AZ31 magnesium alloy sheets, which has important academic significance and engineering value.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Wang, S.J. Liu, R.Z. Wu, S. Zhang, Y. Wang, H.J. Wu, J.H. Zhang and L.G. Hou, Synergistically Improved Damping, Elastic Modulus and Mechanical Properties of Rolled Mg-8Li-4Y-2Er-2Zn-0 6Zr Alloy with Twins and Long-Period Stacking Ordered Phase, J. Alloys. Compd., 2021, 881, p 160663. D. Wang, S.J. Liu, R.Z. Wu, S. Zhang, Y. Wang, H.J. Wu, J.H. Zhang and L.G. Hou, Synergistically Improved Damping, Elastic Modulus and Mechanical Properties of Rolled Mg-8Li-4Y-2Er-2Zn-0 6Zr Alloy with Twins and Long-Period Stacking Ordered Phase, J. Alloys. Compd., 2021, 881, p 160663.
2.
Zurück zum Zitat B. Che, L.W. Lu, Z.Q. Wu, H. Zhang, M. Ma, J. Luo, and H.M. Zhao, Dynamic Recrystallization Behavior and Microstructure Evolution of a New Mg-6Zn-1Gd-1Er Alloy with and Without Pre-Aging Treatment, Mater. Charact., 2021, 181, p 111506. B. Che, L.W. Lu, Z.Q. Wu, H. Zhang, M. Ma, J. Luo, and H.M. Zhao, Dynamic Recrystallization Behavior and Microstructure Evolution of a New Mg-6Zn-1Gd-1Er Alloy with and Without Pre-Aging Treatment, Mater. Charact., 2021, 181, p 111506.
3.
Zurück zum Zitat B. Che, L.L. Lu, W. Kang, J. Luo, M. Ma, and L.F. Liu, Hot Deformation Behavior and Processing Map of a New Type Mg-6Zn-1Gd-1Er Alloy, J. Alloy. Compd., 2021, 862, p 158700. B. Che, L.L. Lu, W. Kang, J. Luo, M. Ma, and L.F. Liu, Hot Deformation Behavior and Processing Map of a New Type Mg-6Zn-1Gd-1Er Alloy, J. Alloy. Compd., 2021, 862, p 158700.
4.
Zurück zum Zitat X.Y. Liu, L.W. Lu, K. Sheng, and T. Zhou, Microstructure and Texture Evolution during the Direct Extrusion and Bending-Shear Deformation of AZ31 Magnesium Alloy, Acta. Metall. Sin-Engl., 2019, 32, p 710–718. X.Y. Liu, L.W. Lu, K. Sheng, and T. Zhou, Microstructure and Texture Evolution during the Direct Extrusion and Bending-Shear Deformation of AZ31 Magnesium Alloy, Acta. Metall. Sin-Engl., 2019, 32, p 710–718.
5.
Zurück zum Zitat K. Sheng, L.W. Lu, Y. Xiang, M. Ma, and Z.Q. Wu, Crack Behavior in Mg/Al Alloy Thin Sheet during Hot Compound Extrusion, J. Magnes. Alloy., 2019, 7(4), p 717–724. K. Sheng, L.W. Lu, Y. Xiang, M. Ma, and Z.Q. Wu, Crack Behavior in Mg/Al Alloy Thin Sheet during Hot Compound Extrusion, J. Magnes. Alloy., 2019, 7(4), p 717–724.
6.
Zurück zum Zitat Y.C. Xin, M.Y. Wang, Z. Zeng, G.J. Huang, and Q. Liu, Tailoring the Texture of Magnesium Alloy by Twinning Deformation to Improve the Rolling Capability, Scripta Mater., 2011, 64(10), p 986–989. Y.C. Xin, M.Y. Wang, Z. Zeng, G.J. Huang, and Q. Liu, Tailoring the Texture of Magnesium Alloy by Twinning Deformation to Improve the Rolling Capability, Scripta Mater., 2011, 64(10), p 986–989.
8.
Zurück zum Zitat J.H. Lee, J.U. Lee, S.H. Kim, S.W. Song, C.S. Lee, and S.H. Park, Dynamic Recrystallization Behavior and Microstructural Evolution of Mg Alloy AZ31 through High-Speed Rolling, J. Mater. Sci. Technol., 2018, 34(10), p 1747–1755. J.H. Lee, J.U. Lee, S.H. Kim, S.W. Song, C.S. Lee, and S.H. Park, Dynamic Recrystallization Behavior and Microstructural Evolution of Mg Alloy AZ31 through High-Speed Rolling, J. Mater. Sci. Technol., 2018, 34(10), p 1747–1755.
9.
Zurück zum Zitat S.H. Zhang, L. Deng, W.H. Tian, L.Z. Che, and Y. Li, Deduction of a Quadratic Velocity Field and its Application to Rolling Force of Extra-Thick Plate, Comput. Math. Appl., 2022, 109, p 58–73. S.H. Zhang, L. Deng, W.H. Tian, L.Z. Che, and Y. Li, Deduction of a Quadratic Velocity Field and its Application to Rolling Force of Extra-Thick Plate, Comput. Math. Appl., 2022, 109, p 58–73.
10.
Zurück zum Zitat B.L. Mordike and T. Ebert, Magnesium: Properties-Applications-Potential, Mater. Sci. Eng. A., 2001, 302(1), p 37–45. B.L. Mordike and T. Ebert, Magnesium: Properties-Applications-Potential, Mater. Sci. Eng. A., 2001, 302(1), p 37–45.
11.
Zurück zum Zitat J.L. Wu, L. Jin, J. Dong, F.H. Wang, and S. Dong, The Texture and its Optimization in Magnesium Alloy, J. Mater. Sci. Technol., 2020, 42, p 175-189. J.L. Wu, L. Jin, J. Dong, F.H. Wang, and S. Dong, The Texture and its Optimization in Magnesium Alloy, J. Mater. Sci. Technol., 2020, 42, p 175-189.
12.
Zurück zum Zitat V.V. Sagaradze, V.A. Shabashov, N.V. Kataeva, K.A. Kozlov, A.R. Kuznetsov, and A.V. Litvinov, The Anomalous Diffusion Processes “Dissolution-Precipitation” of THE γ′ Phase Ni3Al in AN Fe-Ni-Al Alloy during Low-Temperature Deformation, Mater. Lett., 2016, 172, p 207-210. V.V. Sagaradze, V.A. Shabashov, N.V. Kataeva, K.A. Kozlov, A.R. Kuznetsov, and A.V. Litvinov, The Anomalous Diffusion Processes “Dissolution-Precipitation” of THE γ′ Phase Ni3Al in AN Fe-Ni-Al Alloy during Low-Temperature Deformation, Mater. Lett., 2016, 172, p 207-210.
13.
Zurück zum Zitat A. Aletdinov, S. Mironov, G. Korznikova, T. Konkova, R. Zaripova, M. Myshlyaev, and S.L. Semiatin, EBSD Investigation of Microstructure Evolution during Cryogenic Rolling of Type 321 Metastable Austenitic Steel, Mater. Sci. Eng. A., 2019, 745(4), p 460–473. A. Aletdinov, S. Mironov, G. Korznikova, T. Konkova, R. Zaripova, M. Myshlyaev, and S.L. Semiatin, EBSD Investigation of Microstructure Evolution during Cryogenic Rolling of Type 321 Metastable Austenitic Steel, Mater. Sci. Eng. A., 2019, 745(4), p 460–473.
14.
Zurück zum Zitat B. Fu, L.M. Fu, S.C. Liu, H.R. Wang, W. Wang, and A. Shan, High Strength-Ductility Nano-Structured High Manganese Steel Produced by Cryogenic Asymmetry-Rolling, J. Mater. Sci. Technol., 2018, 34(4), p 695–699. B. Fu, L.M. Fu, S.C. Liu, H.R. Wang, W. Wang, and A. Shan, High Strength-Ductility Nano-Structured High Manganese Steel Produced by Cryogenic Asymmetry-Rolling, J. Mater. Sci. Technol., 2018, 34(4), p 695–699.
15.
Zurück zum Zitat Z.Q. Huang, J.C. Wei, Q.X. Huang, L.F. Ma, X.Y. Gao, and Z.H. Yue, Effect of Cryogenic Treatment Prior to Rolling on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy, Rare. Metal. Mat. Eng., 2018, 47(10), p 2942–2948. Z.Q. Huang, J.C. Wei, Q.X. Huang, L.F. Ma, X.Y. Gao, and Z.H. Yue, Effect of Cryogenic Treatment Prior to Rolling on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy, Rare. Metal. Mat. Eng., 2018, 47(10), p 2942–2948.
16.
Zurück zum Zitat N.N. Dong, L.X. Sun, H.B. Ma, and P.P. Jin, Effects of Cryogenic Treatment on Microstructures and Mechanical Properties of Mg-2Nd-4Zn Alloy, Mater. Lett., 2021, 305, p 130699. N.N. Dong, L.X. Sun, H.B. Ma, and P.P. Jin, Effects of Cryogenic Treatment on Microstructures and Mechanical Properties of Mg-2Nd-4Zn Alloy, Mater. Lett., 2021, 305, p 130699.
17.
Zurück zum Zitat K. Zhang and Z.T. Shao, A Comparative Study of Plastic Deformation Mechanisms in Room-Temperature and Cryogenically Deformed Magnesium Alloy AZ31, Mater. Sci. Eng. A., 2021, 807, p 140821. K. Zhang and Z.T. Shao, A Comparative Study of Plastic Deformation Mechanisms in Room-Temperature and Cryogenically Deformed Magnesium Alloy AZ31, Mater. Sci. Eng. A., 2021, 807, p 140821.
18.
Zurück zum Zitat S.W. Lee, S.H. Kim, and S.H. Park, Microstructural Characteristics of AZ31 Alloys Rolled at Room and Cryogenic Temperatures and their Variation during Annealing, J. Magnes. Alloy., 2020, 8(2), p 537–545. S.W. Lee, S.H. Kim, and S.H. Park, Microstructural Characteristics of AZ31 Alloys Rolled at Room and Cryogenic Temperatures and their Variation during Annealing, J. Magnes. Alloy., 2020, 8(2), p 537–545.
19.
Zurück zum Zitat M. Preciado, M.B. Pedro, and C. David, Deep Cryogenic Treatment of HPDC AZ91 Magnesium Alloys Prior to Aging and its Influence on Alloy Microstructure and Mechanical Properties, J. Mater. Process. Tech., 2017, 239, p 297–302. M. Preciado, M.B. Pedro, and C. David, Deep Cryogenic Treatment of HPDC AZ91 Magnesium Alloys Prior to Aging and its Influence on Alloy Microstructure and Mechanical Properties, J. Mater. Process. Tech., 2017, 239, p 297–302.
20.
Zurück zum Zitat J.H. Peng, Z. Zhang, J. Huang, P. Guo, W. Zhou, and Y.C. Wu, The Effect of Grain Size on Texture Evolution and Mechanical Properties of an AZ31 Magnesium Alloy during Cold-Rolling Process, J. Alloy. Compd., 2020, 817, p 153302. J.H. Peng, Z. Zhang, J. Huang, P. Guo, W. Zhou, and Y.C. Wu, The Effect of Grain Size on Texture Evolution and Mechanical Properties of an AZ31 Magnesium Alloy during Cold-Rolling Process, J. Alloy. Compd., 2020, 817, p 153302.
21.
Zurück zum Zitat Y. Jiang, D. Chen, Z.H. Chen, and J.W. Liu, Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy, Mater. Manuf. Process., 2010, 25(8), p 837–841. Y. Jiang, D. Chen, Z.H. Chen, and J.W. Liu, Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy, Mater. Manuf. Process., 2010, 25(8), p 837–841.
22.
Zurück zum Zitat K.M. Asl, A. Tari, and F. Khomamizadeh, Effect of Deep Cryogenic Treatment on Microstructure, Creep and Wear Behaviors of AZ91 Magnesium Alloy, Mater. Sci. Eng. A., 2009, 523(1), p 27–31. K.M. Asl, A. Tari, and F. Khomamizadeh, Effect of Deep Cryogenic Treatment on Microstructure, Creep and Wear Behaviors of AZ91 Magnesium Alloy, Mater. Sci. Eng. A., 2009, 523(1), p 27–31.
23.
Zurück zum Zitat Y. Liu, S. Shao, C.S. Xu, and D.P. Lu, Enhancing Wear Resistance of Mg-Zn-Gd Alloy by Cryogenic Treatment, Mater. Lett., 2012, 76(1), p 201–204. Y. Liu, S. Shao, C.S. Xu, and D.P. Lu, Enhancing Wear Resistance of Mg-Zn-Gd Alloy by Cryogenic Treatment, Mater. Lett., 2012, 76(1), p 201–204.
24.
Zurück zum Zitat J.W. Liu, G.F. Li, D. Chen, and Z.H. Chen, Effect of Cryogenic Treatment on Deformation Behavior of as-Cast AZ91 mg Alloy, Chin. J. Aeronaut., 2012, 25(6), p 931–936. J.W. Liu, G.F. Li, D. Chen, and Z.H. Chen, Effect of Cryogenic Treatment on Deformation Behavior of as-Cast AZ91 mg Alloy, Chin. J. Aeronaut., 2012, 25(6), p 931–936.
25.
Zurück zum Zitat X.Y. Xu, Y.F. Wang, H.Y. Wang, T. Wang, M. Zha, Z.M. Hua, C. Wang, and Q.C. Jiang, Influences of Pre-Existing Mg17Al12 Particles on Static Recrystallization Behavior of Mg-Al-Zn Alloys at different annealing temperatures, J. Alloy. Compd., 2019, 787, p 1104–1109. X.Y. Xu, Y.F. Wang, H.Y. Wang, T. Wang, M. Zha, Z.M. Hua, C. Wang, and Q.C. Jiang, Influences of Pre-Existing Mg17Al12 Particles on Static Recrystallization Behavior of Mg-Al-Zn Alloys at different annealing temperatures, J. Alloy. Compd., 2019, 787, p 1104–1109.
26.
Zurück zum Zitat K. Amini, A. Akhbarizadeh, and S. Javadpour, Investigating the Effect of Quench Environment and Deep Cryogenic Treatment on the Wear Behavior of AZ91, Mater. Design., 2014, 54, p 154–160. K. Amini, A. Akhbarizadeh, and S. Javadpour, Investigating the Effect of Quench Environment and Deep Cryogenic Treatment on the Wear Behavior of AZ91, Mater. Design., 2014, 54, p 154–160.
27.
Zurück zum Zitat K.X. Gu, H. Zhang, B. Zhao, J.W. Wang, Y. Zhou, and Z.Q. Li, Effect of Cryogenic Treatment and Aging Treatment on the Tensile Properties and Microstructure of Ti-6Al-4V Alloy, Mater. Sci. Eng. A., 2013, 584(1), p 170–176. K.X. Gu, H. Zhang, B. Zhao, J.W. Wang, Y. Zhou, and Z.Q. Li, Effect of Cryogenic Treatment and Aging Treatment on the Tensile Properties and Microstructure of Ti-6Al-4V Alloy, Mater. Sci. Eng. A., 2013, 584(1), p 170–176.
28.
Zurück zum Zitat Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, and J.F. Nie, Texture Evolution during Static Recrystallization of Cold-Rolled Magnesium Alloys, Acta. Mater., 2016, 105(15), p 479–494. Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, and J.F. Nie, Texture Evolution during Static Recrystallization of Cold-Rolled Magnesium Alloys, Acta. Mater., 2016, 105(15), p 479–494.
29.
Zurück zum Zitat M.J. Starink, X.Y. Cheng, and S.F. Yang, Hardening of Pure Metals by High-Pressure Torsion: A Physically Based Model Employing Volume-Averaged Defect Evolutions, Acta Mater., 2013, 61(1), p 183–192. M.J. Starink, X.Y. Cheng, and S.F. Yang, Hardening of Pure Metals by High-Pressure Torsion: A Physically Based Model Employing Volume-Averaged Defect Evolutions, Acta Mater., 2013, 61(1), p 183–192.
30.
Zurück zum Zitat H.C. Pan, R. Kang, J.R. Li, H.B. Xie, Z.R. Zeng, Q.Y. Huang, C.L. Yang, Y.P. Ren, and G.W. Qin, Mechanistic Investigation of a Low-Alloy Mg-Ca-Based Extrusion Alloy with High Strength-Ductility Synergy, Acta Mater., 2020, 186, p 278–290. H.C. Pan, R. Kang, J.R. Li, H.B. Xie, Z.R. Zeng, Q.Y. Huang, C.L. Yang, Y.P. Ren, and G.W. Qin, Mechanistic Investigation of a Low-Alloy Mg-Ca-Based Extrusion Alloy with High Strength-Ductility Synergy, Acta Mater., 2020, 186, p 278–290.
31.
Zurück zum Zitat H.H. Yu, C.Z. Li, Y.C. Xin, A. Chapuis, X.X. Huang, and Q. Liu, The Mechanism for the High Dependence of the Hall-Petch Slope for Twinning/Slip on Texture in Mg Alloys, Acta. Mater., 2017, 128, p 313–326. H.H. Yu, C.Z. Li, Y.C. Xin, A. Chapuis, X.X. Huang, and Q. Liu, The Mechanism for the High Dependence of the Hall-Petch Slope for Twinning/Slip on Texture in Mg Alloys, Acta. Mater., 2017, 128, p 313–326.
32.
Zurück zum Zitat Y. Wang and H. Choo, Influence of Texture on Hall-Petch Relationships in an Mg Alloy, Acta. Mater., 2014, 81, p 83–97. Y. Wang and H. Choo, Influence of Texture on Hall-Petch Relationships in an Mg Alloy, Acta. Mater., 2014, 81, p 83–97.
33.
Zurück zum Zitat P. Peng, A.T. Tang, J. She, S.B. Zhou, and F.S. Pan, Ultrafine Grained Magnesium Alloys Research: Status Quo and Future Directions, Mater. Rep., 2019, 33(9), p 1526–1534. P. Peng, A.T. Tang, J. She, S.B. Zhou, and F.S. Pan, Ultrafine Grained Magnesium Alloys Research: Status Quo and Future Directions, Mater. Rep., 2019, 33(9), p 1526–1534.
34.
Zurück zum Zitat D. Zhao, X.H. Chen, J.B. Li, J. Tan, and F.S. Pan, Microstructure, Texture and Mechanical Properties of the Rolled High Modulus Mg-Y-Zn-Al-Li Alloy, Mater. Sci. Eng. A., 2022, 831, p 142242. D. Zhao, X.H. Chen, J.B. Li, J. Tan, and F.S. Pan, Microstructure, Texture and Mechanical Properties of the Rolled High Modulus Mg-Y-Zn-Al-Li Alloy, Mater. Sci. Eng. A., 2022, 831, p 142242.
35.
Zurück zum Zitat Y. Liu, S. Shao, C.S. Xu, X.S. Zeng, and X.J. Yang, Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of Mg-1.5Zn-0.15Gd Magnesium Alloy, Mater. Sci. Eng. A., 2013, 588(20), p 76–81. Y. Liu, S. Shao, C.S. Xu, X.S. Zeng, and X.J. Yang, Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of Mg-1.5Zn-0.15Gd Magnesium Alloy, Mater. Sci. Eng. A., 2013, 588(20), p 76–81.
36.
Zurück zum Zitat B. Che, L.W. Lu, J.L. Zhang, J.H. Zhang, M. Ma, L.F. Wang, and F.G. Qi, Effects of Cryogenic Treatment on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Rolled at Different Paths, Mater. Sci. Eng. A., 2022, 832, p 142475. B. Che, L.W. Lu, J.L. Zhang, J.H. Zhang, M. Ma, L.F. Wang, and F.G. Qi, Effects of Cryogenic Treatment on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Rolled at Different Paths, Mater. Sci. Eng. A., 2022, 832, p 142475.
37.
Zurück zum Zitat Z.Q. Yang, A.B. Ma, H. Liu, D. Song, Y.N. Wu, Y.C. Yuan, J.H. Jiang, and J.P. Sun, Managing Strength and Ductility in AZ91 Magnesium Alloy through ECAP Combined with Prior and Post Aging Treatment, Mater. Char., 2019, 15, p 213–222. Z.Q. Yang, A.B. Ma, H. Liu, D. Song, Y.N. Wu, Y.C. Yuan, J.H. Jiang, and J.P. Sun, Managing Strength and Ductility in AZ91 Magnesium Alloy through ECAP Combined with Prior and Post Aging Treatment, Mater. Char., 2019, 15, p 213–222.
38.
Zurück zum Zitat M. Wang, X.Y. Xu, H.Y. Wang, L.H. He, and M.X. Huang, Evolution of Dislocation and Twin Densities in a Mg alloy at Quasi-Static and High Strain Rates, Acta. Mater., 2020, 201, p 102–113. M. Wang, X.Y. Xu, H.Y. Wang, L.H. He, and M.X. Huang, Evolution of Dislocation and Twin Densities in a Mg alloy at Quasi-Static and High Strain Rates, Acta. Mater., 2020, 201, p 102–113.
39.
Zurück zum Zitat X.Q. Li, Q.C. Le, D.D. Li, P. Wang, P.P. Jin, C.L. Cheng, X.R. Chen, and L. Ren, Hot Tensile Deformation Behavior of Extruded LAZ532 Alloy with Heterostructure, Mater. Sci. Eng. A., 2021, 801(13), p 140412. X.Q. Li, Q.C. Le, D.D. Li, P. Wang, P.P. Jin, C.L. Cheng, X.R. Chen, and L. Ren, Hot Tensile Deformation Behavior of Extruded LAZ532 Alloy with Heterostructure, Mater. Sci. Eng. A., 2021, 801(13), p 140412.
40.
Zurück zum Zitat S. Ganguly, S.T. Reddy, J. Majhi, P. Nasker, and A.K. Mondal, Enhancing Mechanical Properties of Squeeze-Cast AZ91 Magnesium Alloy by Combined Additions of Sb and SiC Nanoparticles, Mater. Sci. Eng. A., 2021, 799(2), p 140341. S. Ganguly, S.T. Reddy, J. Majhi, P. Nasker, and A.K. Mondal, Enhancing Mechanical Properties of Squeeze-Cast AZ91 Magnesium Alloy by Combined Additions of Sb and SiC Nanoparticles, Mater. Sci. Eng. A., 2021, 799(2), p 140341.
41.
Zurück zum Zitat Q.H. Wang, B. Jiang, A.T. Tang, C. He, D.F. Zhang, J.F. Song, T.H. Yang, G.S. Huang, and F.S. Pan, Formation of the Elliptical Texture and its Effect on the Mechanical Properties and Stretch Formability of Dilute Mg-Sn-Y Sheet by Zn Addition, Mater. Sci. Eng. A., 2019, 746(11), p 259-275. Q.H. Wang, B. Jiang, A.T. Tang, C. He, D.F. Zhang, J.F. Song, T.H. Yang, G.S. Huang, and F.S. Pan, Formation of the Elliptical Texture and its Effect on the Mechanical Properties and Stretch Formability of Dilute Mg-Sn-Y Sheet by Zn Addition, Mater. Sci. Eng. A., 2019, 746(11), p 259-275.
42.
Zurück zum Zitat T.S. Zhou, Z.H. Liu, D.L. Yang, S.J. Meng, Z. Jia, and D.X. Liu, High Ductility in Solution-Treated Mg-Sc-Yb-Mn-Zr Alloy Mediated by <c+a> Dislocations, J. Alloys. Compd., 2021, 873, p 159880. T.S. Zhou, Z.H. Liu, D.L. Yang, S.J. Meng, Z. Jia, and D.X. Liu, High Ductility in Solution-Treated Mg-Sc-Yb-Mn-Zr Alloy Mediated by <c+a> Dislocations, J. Alloys. Compd., 2021, 873, p 159880.
43.
Zurück zum Zitat K. Zhang, J.H. Zheng, C. Hopper, C.Y. Sun, and J. Jiang, Enhanced Plasticity at Cryogenic Temperature in a Magnesium Alloy, Mater. Sci. Eng. A., 2021, 811(15), p 141001. K. Zhang, J.H. Zheng, C. Hopper, C.Y. Sun, and J. Jiang, Enhanced Plasticity at Cryogenic Temperature in a Magnesium Alloy, Mater. Sci. Eng. A., 2021, 811(15), p 141001.
44.
Zurück zum Zitat Y.K. Pan, J.T. Wang, H.W. Cui, R. Feng, B.K. Gong, X.C. Zhao, N. Hou, B.R. Cui, Y.R. Song, and T. Yang, Effect of Deep Cryogenic Treatment on the Microstructure and Corrosion Behavior of the Microarc Oxidized Mg-2.0Zn-0.5Ca Alloy, J. Mater. Res. Technol., 2020, 9(3), p 3943–3949. Y.K. Pan, J.T. Wang, H.W. Cui, R. Feng, B.K. Gong, X.C. Zhao, N. Hou, B.R. Cui, Y.R. Song, and T. Yang, Effect of Deep Cryogenic Treatment on the Microstructure and Corrosion Behavior of the Microarc Oxidized Mg-2.0Zn-0.5Ca Alloy, J. Mater. Res. Technol., 2020, 9(3), p 3943–3949.
Metadaten
Titel
Effects of Rolling-Cryogenic Process on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets
verfasst von
Jialong Zhang
Liwei Lu
Bo Che
Min Ma
Zhiqiang Wu
Tao Zhou
Hua Zhang
Fugang Qi
Publikationsdatum
31.10.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 14/2023
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07559-w

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.