Skip to main content
Erschienen in: Metals and Materials International 6/2018

18.08.2018

Effects of Solution Treatment Temperatures on Microstructure and Mechanical Properties of TIG–MIG Hybrid Arc Additive Manufactured 5356 Aluminum Alloy

verfasst von: Wei Zuo, Le Ma, Yu Lu, Shu-yong Li, Zhiqiang Ji, Min Ding

Erschienen in: Metals and Materials International | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel additive manufacturing method with TIG–MIG hybrid heat source was applied for fabricating 5356 aluminum alloy component. In this paper the microstructure evolution, mechanical properties and fracture morphologies of both as-deposited and heat-treated component were investigated, and how these were affected by different heat-treated temperature. The as-deposited microstructure showed dominant equiaxed grains with second phase, and the size of them is coarse in the bottom region, medium in the middle region and fine in the top region owing to different thermal cycling conditions. Compared with as-deposited microstructure, the size of grain becomes large and second phases gradually dissolve in the matrix as heat-treated temperature increase. Different microstructures determine the mechanical properties of component. Results show that average ultimate tensile strength enhances from 226 to 270 MPa and average microhardness increases from 64.2 to 75.3 HV0.1 but ductility decreases from 33 to 6.5% with heat-treated temperature increasing. For all components, the tensile properties are almost the same in the vertical direction (Z) and horizontal direction (Y) due to equiaxed grains, which exhibits isotropy, and the mechanisms of these are analyzed in detailed. In general, the results demonstrate that hybrid arc heat source has the potential to fabricate aluminum alloy component.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Ruffo, C. Tuck, R.J.M. Hague, Cost estimation for rapid manufacturing: laser sintering production for low to medium volumes. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 220, 1417–1427 (2006)CrossRef M. Ruffo, C. Tuck, R.J.M. Hague, Cost estimation for rapid manufacturing: laser sintering production for low to medium volumes. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 220, 1417–1427 (2006)CrossRef
2.
Zurück zum Zitat S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Additive manufacturing and its societal impact: a literature review. Int. J. Adv. Manuf. Technol. 67, 1191–1203 (2013)CrossRef S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Additive manufacturing and its societal impact: a literature review. Int. J. Adv. Manuf. Technol. 67, 1191–1203 (2013)CrossRef
3.
Zurück zum Zitat K.V. Wong, A. Hernandez, A review of additive manufacturing. ISRN Mech. Eng. 2, 1–10 (2012)CrossRef K.V. Wong, A. Hernandez, A review of additive manufacturing. ISRN Mech. Eng. 2, 1–10 (2012)CrossRef
4.
Zurück zum Zitat M.H. Farshidianfar, A. Khajepour, A.P. Gerlich, Effect of real-time cooling rate on microstructure in Laser Additive Manufacturing. J. Mater. Process. Technol. 231, 468–478 (2016)CrossRef M.H. Farshidianfar, A. Khajepour, A.P. Gerlich, Effect of real-time cooling rate on microstructure in Laser Additive Manufacturing. J. Mater. Process. Technol. 231, 468–478 (2016)CrossRef
5.
Zurück zum Zitat C.A. Brice, B.T. Rosenberger, S.N. Sankaran et al., Chemistry control in electron beam deposited titanium alloys. Mater. Sci. Forum 618, 155–158 (2009)CrossRef C.A. Brice, B.T. Rosenberger, S.N. Sankaran et al., Chemistry control in electron beam deposited titanium alloys. Mater. Sci. Forum 618, 155–158 (2009)CrossRef
6.
Zurück zum Zitat Y. Ma, D. Cuiuri, N. Hoye et al., The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in situ alloying and gas tungsten arc welding. Mater. Sci. Eng. A 631, 230–240 (2015)CrossRef Y. Ma, D. Cuiuri, N. Hoye et al., The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in situ alloying and gas tungsten arc welding. Mater. Sci. Eng. A 631, 230–240 (2015)CrossRef
7.
Zurück zum Zitat F. Martina, J. Mehnen, S.W. Williams et al., Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V. J. Mater. Process. Technol. 212, 1377–1386 (2012)CrossRef F. Martina, J. Mehnen, S.W. Williams et al., Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V. J. Mater. Process. Technol. 212, 1377–1386 (2012)CrossRef
8.
Zurück zum Zitat E. Brandl, A. Schoberth, C. Leyens, Morphology, microstructure, and hardness of titanium (Ti–6Al–4V) blocks deposited by wire-feed additive layer manufacturing (ALM). Mater. Sci. Eng. A 532, 295–307 (2012)CrossRef E. Brandl, A. Schoberth, C. Leyens, Morphology, microstructure, and hardness of titanium (Ti–6Al–4V) blocks deposited by wire-feed additive layer manufacturing (ALM). Mater. Sci. Eng. A 532, 295–307 (2012)CrossRef
9.
Zurück zum Zitat J.Y. Bai, C.L. Fan, S.B. Lin et al., Effects of thermal cycles on microstructure evolution of 2219-Al during GTA-additive manufacturing. Int. J. Adv. Manuf. Technol. 87, 1–9 (2016)CrossRef J.Y. Bai, C.L. Fan, S.B. Lin et al., Effects of thermal cycles on microstructure evolution of 2219-Al during GTA-additive manufacturing. Int. J. Adv. Manuf. Technol. 87, 1–9 (2016)CrossRef
10.
Zurück zum Zitat J.Y. Bai, C.L. Yang, S.B. Lin et al., Mechanical properties of 2219-Al components produced by additive manufacturing with TIG. Int. J. Adv. Manuf. Technol. 86, 1–7 (2015) J.Y. Bai, C.L. Yang, S.B. Lin et al., Mechanical properties of 2219-Al components produced by additive manufacturing with TIG. Int. J. Adv. Manuf. Technol. 86, 1–7 (2015)
11.
Zurück zum Zitat J.Y. Bai, C.L. Fan, S.B. Lin et al., Mechanical properties and fracture behaviors of GTA-additive manufactured 2219-Al after an especial heat treatment. J. Mater. Eng. Perform. 26, 1808–1816 (2017)CrossRef J.Y. Bai, C.L. Fan, S.B. Lin et al., Mechanical properties and fracture behaviors of GTA-additive manufactured 2219-Al after an especial heat treatment. J. Mater. Eng. Perform. 26, 1808–1816 (2017)CrossRef
12.
Zurück zum Zitat J. Gu, J. Ding, S.W. Williams et al., The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys. J. Mater. Process. Technol. 230, 26–34 (2016)CrossRef J. Gu, J. Ding, S.W. Williams et al., The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys. J. Mater. Process. Technol. 230, 26–34 (2016)CrossRef
13.
Zurück zum Zitat J. Gu, J. Ding, S.W. Williams et al., The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3Cu alloy. Mater. Sci. Eng. A 651, 18–26 (2016)CrossRef J. Gu, J. Ding, S.W. Williams et al., The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3Cu alloy. Mater. Sci. Eng. A 651, 18–26 (2016)CrossRef
14.
Zurück zum Zitat H. Geng, J. Xiong, D. Huang et al., A prediction model of layer geometrical size in wire and arc additive manufacture using response surface methodology. Int. J. Adv. Manuf. Technol. 2015, 1–12 (2015) H. Geng, J. Xiong, D. Huang et al., A prediction model of layer geometrical size in wire and arc additive manufacture using response surface methodology. Int. J. Adv. Manuf. Technol. 2015, 1–12 (2015)
15.
Zurück zum Zitat A.S. Haselhuhn, B. Wijnen, G.C. Anzalone et al., In situ formation of substrate release mechanisms for gas metal arc weld metal 3-D printing. J. Mater. Process. Technol. 226, 50–59 (2015)CrossRef A.S. Haselhuhn, B. Wijnen, G.C. Anzalone et al., In situ formation of substrate release mechanisms for gas metal arc weld metal 3-D printing. J. Mater. Process. Technol. 226, 50–59 (2015)CrossRef
16.
Zurück zum Zitat H. Geng, J. Li, J. Xiong et al., Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy. Sci. Technol. Weld Join 2016, 1–12 (2016) H. Geng, J. Li, J. Xiong et al., Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy. Sci. Technol. Weld Join 2016, 1–12 (2016)
17.
Zurück zum Zitat A.S. Haselhuhn, M.W. Buhr, B. Wijnen et al., Structure–property relationships of common aluminum weld alloys utilized as feedstock for GMAW-based 3-D metal printing. Mater. Sci. Eng. A 673, 511–523 (2016)CrossRef A.S. Haselhuhn, M.W. Buhr, B. Wijnen et al., Structure–property relationships of common aluminum weld alloys utilized as feedstock for GMAW-based 3-D metal printing. Mater. Sci. Eng. A 673, 511–523 (2016)CrossRef
18.
Zurück zum Zitat H. Geng, J. Li, J. Xiong et al., Geometric limitation and tensile properties of wire and arc additive manufacturing 5A06 aluminum alloy parts. J. Mater. Eng. Perform. 26, 1–9 (2016) H. Geng, J. Li, J. Xiong et al., Geometric limitation and tensile properties of wire and arc additive manufacturing 5A06 aluminum alloy parts. J. Mater. Eng. Perform. 26, 1–9 (2016)
19.
Zurück zum Zitat C. Zhang, Y. Li, M. Gao et al., Wire arc additive manufacturing of Al–6Mg alloy using variable polarity cold metal transfer arc as power source. Mater. Sci. Eng. A 711, 415–423 (2018)CrossRef C. Zhang, Y. Li, M. Gao et al., Wire arc additive manufacturing of Al–6Mg alloy using variable polarity cold metal transfer arc as power source. Mater. Sci. Eng. A 711, 415–423 (2018)CrossRef
20.
Zurück zum Zitat S. Zhou, Z. Zhang, M. Li et al., Effect of Sc on microstructure and mechanical properties of as-cast Al–Mg alloys. Mater. Des. 90(6), 1077–1084 (2016)CrossRef S. Zhou, Z. Zhang, M. Li et al., Effect of Sc on microstructure and mechanical properties of as-cast Al–Mg alloys. Mater. Des. 90(6), 1077–1084 (2016)CrossRef
21.
Zurück zum Zitat J.D. Ming, W.C. Li, Y.U. Jie et al., Cleavage and intergranular fracture in Al–Mg alloys. Mater. Sci. Technol. 49, 387–392 (2002) J.D. Ming, W.C. Li, Y.U. Jie et al., Cleavage and intergranular fracture in Al–Mg alloys. Mater. Sci. Technol. 49, 387–392 (2002)
22.
Zurück zum Zitat N.K. Babu, K. Kallip, M. Leparoux et al., Influence of microstructure and strengthening mechanism of AlMg5–Al2O3, nanocomposites prepared via spark plasma sintering. Mater. Des. 95, 534–544 (2016)CrossRef N.K. Babu, K. Kallip, M. Leparoux et al., Influence of microstructure and strengthening mechanism of AlMg5–Al2O3, nanocomposites prepared via spark plasma sintering. Mater. Des. 95, 534–544 (2016)CrossRef
23.
Zurück zum Zitat Øyvind Ryen, B. Holmedal, O. Nijs et al., Strengthening mechanisms in solid solution aluminum alloys. Metall. Mater. Trans. A 37, 1999–2006 (2006)CrossRef Øyvind Ryen, B. Holmedal, O. Nijs et al., Strengthening mechanisms in solid solution aluminum alloys. Metall. Mater. Trans. A 37, 1999–2006 (2006)CrossRef
24.
Zurück zum Zitat E.L. Huskins, B. Cao, K.T. Ramesh, Strengthening mechanisms in an Al–Mg alloy. Mater. Sci. Eng. A 527, 1292–1298 (2010)CrossRef E.L. Huskins, B. Cao, K.T. Ramesh, Strengthening mechanisms in an Al–Mg alloy. Mater. Sci. Eng. A 527, 1292–1298 (2010)CrossRef
25.
Zurück zum Zitat M. Zha, X.T. Meng, H.M. Zhang et al., High strength and ductile high solid solution Al-Mg alloy processed by a novel hard-plate rolling route. J. Alloys Compd. 728, 872–877 (2017)CrossRef M. Zha, X.T. Meng, H.M. Zhang et al., High strength and ductile high solid solution Al-Mg alloy processed by a novel hard-plate rolling route. J. Alloys Compd. 728, 872–877 (2017)CrossRef
Metadaten
Titel
Effects of Solution Treatment Temperatures on Microstructure and Mechanical Properties of TIG–MIG Hybrid Arc Additive Manufactured 5356 Aluminum Alloy
verfasst von
Wei Zuo
Le Ma
Yu Lu
Shu-yong Li
Zhiqiang Ji
Min Ding
Publikationsdatum
18.08.2018
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 6/2018
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-018-0142-3

Weitere Artikel der Ausgabe 6/2018

Metals and Materials International 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.