Skip to main content
Erschienen in: Journal of Materials Science 17/2020

02.03.2020 | Review

Effects of strain on various properties and applications on one-dimensional nano-/microstructures

verfasst von: Poulami Ghosh, Mingyuan Huang

Erschienen in: Journal of Materials Science | Ausgabe 17/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Strain is an unavoidable feature of the nanostructures grown by different synthesizing techniques due to several factors like lattice mismatching with substrate, different growth parameters, etc. Part of strain could be released by post-growth treatment such as annealing, detaching sample from substrate and giving further strain. Researchers have worked on minimizing the intrinsic strain for better performances of grown nanostructures and enhancing the stability. But about four decades ago, strain engineering has taken another level of research interest as strain modifies the nanostructures mechanical, electronic and optical properties. Those modifications are beneficial for novel flexible device applications. Thus, nowadays, research related to strain on both one- and two-dimensional nanostructures has boost up for exploring new features, thereby paving the way for future stretchable novel devices. In this article, we first concentrate on the investigations of various strain-related effects on the properties of one-dimensional nanostructures and its advantages. Finally, we discuss the challenges and future opportunities on strain-induced effects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhao J, Deng Y, Wei H, Zheng X, Yu Z, Shao Y, Shield JE, Huang J (2017) Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci Adv 3:eaao5616-1–eaao5616-8 Zhao J, Deng Y, Wei H, Zheng X, Yu Z, Shao Y, Shield JE, Huang J (2017) Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci Adv 3:eaao5616-1–eaao5616-8
2.
Zurück zum Zitat Singh S, Khare N (2018) Effect of intrinsic strain on the optical bandgap and magnetic properties of single domain CoFe2O4 nanoparticles. Appl Phys A 124:107-1–107-7 Singh S, Khare N (2018) Effect of intrinsic strain on the optical bandgap and magnetic properties of single domain CoFe2O4 nanoparticles. Appl Phys A 124:107-1–107-7
3.
Zurück zum Zitat Liao X, Hao F, Xiao H, Chen X (2016) Effects of intrinsic strain on the structural stability and mechanical properties of phosphorene nanotubes. Nanotechnology 27:215701-1–215701-8 Liao X, Hao F, Xiao H, Chen X (2016) Effects of intrinsic strain on the structural stability and mechanical properties of phosphorene nanotubes. Nanotechnology 27:215701-1–215701-8
4.
Zurück zum Zitat Auzelle T, Biquard X, Amalric EB, Fang Z, Roussel H, Cros A, Daudin B (2016) Unraveling the strain state of GaN down to single nanowires. J Appl Phys 120:225701-1–225701-7 Auzelle T, Biquard X, Amalric EB, Fang Z, Roussel H, Cros A, Daudin B (2016) Unraveling the strain state of GaN down to single nanowires. J Appl Phys 120:225701-1–225701-7
5.
Zurück zum Zitat Jindal V, Grandusky J, Jamil M, Tripathi N, Thiel B, Sandvik FS, Balch J, LeBoeuf S (2008) Effect of interfacial strain on the formation of AlGaN nanostructures by selective area heteroepitaxy. Physica E 40:478–483 Jindal V, Grandusky J, Jamil M, Tripathi N, Thiel B, Sandvik FS, Balch J, LeBoeuf S (2008) Effect of interfacial strain on the formation of AlGaN nanostructures by selective area heteroepitaxy. Physica E 40:478–483
6.
Zurück zum Zitat Han X, Kou L, Lang X, Xia J, Wang N, Qin R, Lu J, Xu J, Liao Z, Zhang X, Shan X, Song X, Gao J, Guo W, Yu D (2009) Electronic and mechanical coupling in bent ZnO nanowires. Adv Mater 21:4937–4941 Han X, Kou L, Lang X, Xia J, Wang N, Qin R, Lu J, Xu J, Liao Z, Zhang X, Shan X, Song X, Gao J, Guo W, Yu D (2009) Electronic and mechanical coupling in bent ZnO nanowires. Adv Mater 21:4937–4941
7.
Zurück zum Zitat Sanchez JM, Trotta R, Piredda G, Schimpf C, Trevisi G, Seravalli L, Frigeri P, Stroj S, Lettner T, Reindl M, Wildmann JS, Edlinger J, Rastelli A (2016) Reversible control of in-plane elastic stress tensor in nanomembranes. Adv Opt Mater 4:682–687 Sanchez JM, Trotta R, Piredda G, Schimpf C, Trevisi G, Seravalli L, Frigeri P, Stroj S, Lettner T, Reindl M, Wildmann JS, Edlinger J, Rastelli A (2016) Reversible control of in-plane elastic stress tensor in nanomembranes. Adv Opt Mater 4:682–687
8.
Zurück zum Zitat Signorello G, Karg S, Bjork MT, Gotsmann B, Riel H (2013) Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain. Nano Lett 13:917–924 Signorello G, Karg S, Bjork MT, Gotsmann B, Riel H (2013) Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain. Nano Lett 13:917–924
9.
Zurück zum Zitat Wei B, Zheng K, Ji Y, Zhang Y, Zhang Z, Han X (2012) Size-dependent bandgap modulation of ZnO nanowires by tensile strain. Nano Lett 12:4595–4599 Wei B, Zheng K, Ji Y, Zhang Y, Zhang Z, Han X (2012) Size-dependent bandgap modulation of ZnO nanowires by tensile strain. Nano Lett 12:4595–4599
10.
Zurück zum Zitat Huang M, Wu Y, Chandra B, Yan H, Shan Y, Heinz TF, Hone J (2008) Direct measurement of strain-induced changes in the band structure of carbon nanotubes. Phys Rev Lett 100:136803-1–136803-4 Huang M, Wu Y, Chandra B, Yan H, Shan Y, Heinz TF, Hone J (2008) Direct measurement of strain-induced changes in the band structure of carbon nanotubes. Phys Rev Lett 100:136803-1–136803-4
11.
Zurück zum Zitat Fu X, Liao Z, Liu R, Lin F, Xu J, Zhu R, Zhong W, Liu Y, Guo W, Yu D (2015) Strain loading mode dependent bandgap deformation potential in ZnO micro/nanowires. ACS Nano 9:11960–11967 Fu X, Liao Z, Liu R, Lin F, Xu J, Zhu R, Zhong W, Liu Y, Guo W, Yu D (2015) Strain loading mode dependent bandgap deformation potential in ZnO micro/nanowires. ACS Nano 9:11960–11967
12.
Zurück zum Zitat Su X, Guo W, Du S, Loy MMT, Wang N (2012) Piezotronic effects on the optical properties of ZnO nanowires. Nano Lett 12:5802–5807 Su X, Guo W, Du S, Loy MMT, Wang N (2012) Piezotronic effects on the optical properties of ZnO nanowires. Nano Lett 12:5802–5807
13.
Zurück zum Zitat Fu X, Su C, Fu Q, Zhu X, Zhu R, Liu C, Liao Z, Xu J, Guo W, Feng J, Li J, Yu D (2014) Tailoring exciton dynamics by elastic strain-gradient in semiconductors. Adv Mater 26:2572–2579 Fu X, Su C, Fu Q, Zhu X, Zhu R, Liu C, Liao Z, Xu J, Guo W, Feng J, Li J, Yu D (2014) Tailoring exciton dynamics by elastic strain-gradient in semiconductors. Adv Mater 26:2572–2579
14.
Zurück zum Zitat Fu X, Liao Z, Ye Y, Xu J, Dai L, Zhu R, Guo W, Yu D (2014) Outermost tensile strain dominated exciton emission in bending CdSe nanowires. Sci China Mater 57:26–33 Fu X, Liao Z, Ye Y, Xu J, Dai L, Zhu R, Guo W, Yu D (2014) Outermost tensile strain dominated exciton emission in bending CdSe nanowires. Sci China Mater 57:26–33
15.
Zurück zum Zitat Fu X, Fu Q, Kou L, Zhu X, Zhu R, Xu J, Liao Z, Zhao Q, Guo W, Yu D (2013) Modifying optical properties of ZnO nanowires via strain-gradient. Front Phys 8:509–515 Fu X, Fu Q, Kou L, Zhu X, Zhu R, Xu J, Liao Z, Zhao Q, Guo W, Yu D (2013) Modifying optical properties of ZnO nanowires via strain-gradient. Front Phys 8:509–515
16.
Zurück zum Zitat Fu X, Jacopin G, Shahmohammadi M, Liu R, Benameur M, Ganiere JD, Feng J, Guo W, Liao Z, Deveaud B, Yu D (2014) Exciton drift in semiconductors under uniforn strain gradients:application to bent ZnO microwires. ACS Nano 8:3412–3420 Fu X, Jacopin G, Shahmohammadi M, Liu R, Benameur M, Ganiere JD, Feng J, Guo W, Liao Z, Deveaud B, Yu D (2014) Exciton drift in semiconductors under uniforn strain gradients:application to bent ZnO microwires. ACS Nano 8:3412–3420
17.
Zurück zum Zitat Jang W, Kang K, Soon A (2016) Acute mechano-electronic responses in twisted phosphorene nanoribbons. Nanoscale 8:14778–14784 Jang W, Kang K, Soon A (2016) Acute mechano-electronic responses in twisted phosphorene nanoribbons. Nanoscale 8:14778–14784
18.
Zurück zum Zitat Zhang Z, Guo W (2007) Magnetic properties of strained single-walled carbon nanotubes. Appl Phys Lett 90:053114-1–053114-3 Zhang Z, Guo W (2007) Magnetic properties of strained single-walled carbon nanotubes. Appl Phys Lett 90:053114-1–053114-3
19.
Zurück zum Zitat Wang X, Cui X, Bhat A, Savage DE, Reno JL, Lagally MG, Paiella R (2018) Ultrawide strain-tuning of light emission from InGaAs nanomembranes. Appl Phys Lett 113:201105-1–201105-4 Wang X, Cui X, Bhat A, Savage DE, Reno JL, Lagally MG, Paiella R (2018) Ultrawide strain-tuning of light emission from InGaAs nanomembranes. Appl Phys Lett 113:201105-1–201105-4
20.
Zurück zum Zitat Chu M, Sun Y, Aghoram U, Thompson SE (2009) Strain: a solution for higher carrier mobility in nanoscale MOSFETs. Annu Rev Mater Res 39:203–229 Chu M, Sun Y, Aghoram U, Thompson SE (2009) Strain: a solution for higher carrier mobility in nanoscale MOSFETs. Annu Rev Mater Res 39:203–229
21.
Zurück zum Zitat Gomez AC, Roldan R, Cappelluti E, Buscema M, Guinea F, van der Zant HSJ, Steele GA (2013) Local strain engineering in atomically thin MoS2. Nano Lett 13:5361–5366 Gomez AC, Roldan R, Cappelluti E, Buscema M, Guinea F, van der Zant HSJ, Steele GA (2013) Local strain engineering in atomically thin MoS2. Nano Lett 13:5361–5366
22.
Zurück zum Zitat Huang M, Yan H, Chen C, Song D, Heinz TF, Hone J (2009) Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. PNAS 106:7304–7308 Huang M, Yan H, Chen C, Song D, Heinz TF, Hone J (2009) Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. PNAS 106:7304–7308
23.
Zurück zum Zitat Wang Y, Cong C, Yang W, Shang J, Peimyoo N, Chen Y, Kang J, Wang J, Huang W, Wu T (2015) Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nanoscale 8:2562–2572 Wang Y, Cong C, Yang W, Shang J, Peimyoo N, Chen Y, Kang J, Wang J, Huang W, Wu T (2015) Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nanoscale 8:2562–2572
24.
Zurück zum Zitat Lee SY, Kim SH, Nam YS, Yu JC, Lee S, Kim DB, Jung ED, Woo JH, Ahn SM, Lee S, Choi KJ, Kim JY, Song MH (2019) Flexibility of semitransparent perovskite light-emitting diodes investigated by tensile properties of the perovskite layer. Nano Lett 19:971–976 Lee SY, Kim SH, Nam YS, Yu JC, Lee S, Kim DB, Jung ED, Woo JH, Ahn SM, Lee S, Choi KJ, Kim JY, Song MH (2019) Flexibility of semitransparent perovskite light-emitting diodes investigated by tensile properties of the perovskite layer. Nano Lett 19:971–976
25.
Zurück zum Zitat Tu Q, Spanopoulos I, Yasaei P, Stoumpos CC, Kanatzidis MG, Shekhawat GS, Dravid VP (2018) Stretching and breaking of ultrathin 2D hybrid organic–inorganic perovskites. ACS Nano 12:10347–10354 Tu Q, Spanopoulos I, Yasaei P, Stoumpos CC, Kanatzidis MG, Shekhawat GS, Dravid VP (2018) Stretching and breaking of ultrathin 2D hybrid organic–inorganic perovskites. ACS Nano 12:10347–10354
26.
Zurück zum Zitat Guo R, Su J, Lin Z, Qin Y, Zhang J, Chang J, Hao Y (2019) Understanding the potential of 2D Ga2O3 in flexible optoelectronic devices: impact of uniaxial strain and electric field. Adv Theory Simul 2:1900106 Guo R, Su J, Lin Z, Qin Y, Zhang J, Chang J, Hao Y (2019) Understanding the potential of 2D Ga2O3 in flexible optoelectronic devices: impact of uniaxial strain and electric field. Adv Theory Simul 2:1900106
27.
Zurück zum Zitat Huang T, Wei W, Chen X, Dai N (2019) Strained 2D layered materials and heterojunctions. Ann Phys 531:1800465 Huang T, Wei W, Chen X, Dai N (2019) Strained 2D layered materials and heterojunctions. Ann Phys 531:1800465
28.
Zurück zum Zitat Song J, Zhou J, Wang ZL (2006) Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano Lett. 6:1656–1662 Song J, Zhou J, Wang ZL (2006) Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano Lett. 6:1656–1662
29.
Zurück zum Zitat Zhou J, Fei P, Gao Y, Gu Y, Liu J, Bao G, Wang ZL (2008) Mechanical–electrical triggers and sensors using piezoelectric microwires/nanowires. Nano Lett 8:2725–2730 Zhou J, Fei P, Gao Y, Gu Y, Liu J, Bao G, Wang ZL (2008) Mechanical–electrical triggers and sensors using piezoelectric microwires/nanowires. Nano Lett 8:2725–2730
30.
Zurück zum Zitat Wang X, Zhou J, Song J, Liu J, Xu N, Wang ZL (2006) Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett 6:2768–2772 Wang X, Zhou J, Song J, Liu J, Xu N, Wang ZL (2006) Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett 6:2768–2772
31.
Zurück zum Zitat He JH, Hsin CL, Liu J, Chen LJ, Wang ZL (2007) Piezoelectric gated diode of a single ZnO nanowire. Adv Mater 19:781–784 He JH, Hsin CL, Liu J, Chen LJ, Wang ZL (2007) Piezoelectric gated diode of a single ZnO nanowire. Adv Mater 19:781–784
32.
Zurück zum Zitat Zhou J, Gu Y, Fei P, Mai W, Gao Y, Yang R, Bao G, Wang ZL (2008) Flexible piezotronic strain sensor. Nano Lett 8:3035–3040 Zhou J, Gu Y, Fei P, Mai W, Gao Y, Yang R, Bao G, Wang ZL (2008) Flexible piezotronic strain sensor. Nano Lett 8:3035–3040
33.
Zurück zum Zitat Wu W, Wei Y, Wang ZL (2010) Strain-gated piezotronic logic nanodevices. Adv Mater 22:4711–4715 Wu W, Wei Y, Wang ZL (2010) Strain-gated piezotronic logic nanodevices. Adv Mater 22:4711–4715
34.
Zurück zum Zitat Zhou J, Fei P, Gu Y, Mai W, Gao Y, Yang R, Bao G, Wang ZL (2008) Piezoelectric-potential-controlled polarity-reversible schottky diodes and switches of ZnO wires. Nano Lett 8:3973–3977 Zhou J, Fei P, Gu Y, Mai W, Gao Y, Yang R, Bao G, Wang ZL (2008) Piezoelectric-potential-controlled polarity-reversible schottky diodes and switches of ZnO wires. Nano Lett 8:3973–3977
35.
Zurück zum Zitat Buchine BA, Hughes WL, Degertekin FL, Wang ZL (2006) Bulk acoustic resonator based on piezoelectric ZnO belts. Nano Lett 6:1155–1159 Buchine BA, Hughes WL, Degertekin FL, Wang ZL (2006) Bulk acoustic resonator based on piezoelectric ZnO belts. Nano Lett 6:1155–1159
36.
Zurück zum Zitat Lao CS, Quang K, Wang ZL, Park MC, Deng Y (2007) Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Appl Phys Lett 90:262107-1–262107-3 Lao CS, Quang K, Wang ZL, Park MC, Deng Y (2007) Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Appl Phys Lett 90:262107-1–262107-3
37.
Zurück zum Zitat Phan HP, Dinh T, Kozeki T, Nguyen TK, Qamar A, Namazu T, Nguyen NT, Dao DV (2016) Nano strain amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects. Appl Phys Lett 109:123502-1–123502-5 Phan HP, Dinh T, Kozeki T, Nguyen TK, Qamar A, Namazu T, Nguyen NT, Dao DV (2016) Nano strain amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects. Appl Phys Lett 109:123502-1–123502-5
38.
Zurück zum Zitat Petykiewicz J, Nam D, Sukhdeo DS, Gupta S, Buckley S, Piggott AY, Vuckovic J, Saraswat KC (2016) Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities. Nano Lett 16:2168–2173 Petykiewicz J, Nam D, Sukhdeo DS, Gupta S, Buckley S, Piggott AY, Vuckovic J, Saraswat KC (2016) Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities. Nano Lett 16:2168–2173
39.
Zurück zum Zitat Bao S, Kim D, Onwukaeme C, Gupta S, Saraswat K, Lee KH, Kim Y, Min D, Jung Y, Qiu H, Wang H, Fitzgerald EA, Tan CS, Nam D (2017) Low-threshold optically pumped lasing in highly strained germanium nanowires. Nat Commun 8:1845-1–1845-7 Bao S, Kim D, Onwukaeme C, Gupta S, Saraswat K, Lee KH, Kim Y, Min D, Jung Y, Qiu H, Wang H, Fitzgerald EA, Tan CS, Nam D (2017) Low-threshold optically pumped lasing in highly strained germanium nanowires. Nat Commun 8:1845-1–1845-7
40.
Zurück zum Zitat Su J, He J, Zhang J, Lin Z, Chang J, Zhang J, Hao Y (2019) Unusual properties and potential applications of strain BN–MS2 (M = Mo, W) heterostructures. Sci Rep 9:3518-1–3518-9 Su J, He J, Zhang J, Lin Z, Chang J, Zhang J, Hao Y (2019) Unusual properties and potential applications of strain BN–MS2 (M = Mo, W) heterostructures. Sci Rep 9:3518-1–3518-9
41.
Zurück zum Zitat Li X, Maute K, Dunn ML, Yang R (2010) Strain effects on the thermal conductivity of nanostructures. Phys Rev B 81:245318-1–245318-11 Li X, Maute K, Dunn ML, Yang R (2010) Strain effects on the thermal conductivity of nanostructures. Phys Rev B 81:245318-1–245318-11
42.
Zurück zum Zitat Deng S, Li L, Li M (2018) Stability of direct bandgap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2. Phys E Low Dimens Syst Nanostruct 101:44–49 Deng S, Li L, Li M (2018) Stability of direct bandgap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2. Phys E Low Dimens Syst Nanostruct 101:44–49
43.
Zurück zum Zitat Scalise E, Houssa M, Pourtois G, Afanasev V, Stesmans A (2012) Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res 5:43–48 Scalise E, Houssa M, Pourtois G, Afanasev V, Stesmans A (2012) Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res 5:43–48
44.
Zurück zum Zitat Virgilio M, Manganelli CL, Grosso G, Pizzi G, Capellini G (2013) Radiative recombination and optical gain spectra in biaxially strained n-type germanium. Phys Rev B 87:235313-1–235313-11 Virgilio M, Manganelli CL, Grosso G, Pizzi G, Capellini G (2013) Radiative recombination and optical gain spectra in biaxially strained n-type germanium. Phys Rev B 87:235313-1–235313-11
45.
Zurück zum Zitat Peelaers H, Walle CGV (2012) Effects of strain on band structure and effective masses in MoS2. Phys Rev B 86:241401-1–241401-5 Peelaers H, Walle CGV (2012) Effects of strain on band structure and effective masses in MoS2. Phys Rev B 86:241401-1–241401-5
46.
Zurück zum Zitat Shi Z, Tsymbalov E, Dao M, Suresh S, Shapeev A, Li J (2019) Deep elastic strain engineering of bandgap through machine learning. PNAS 116:4117–4122 Shi Z, Tsymbalov E, Dao M, Suresh S, Shapeev A, Li J (2019) Deep elastic strain engineering of bandgap through machine learning. PNAS 116:4117–4122
47.
Zurück zum Zitat Vazinishayan A, Lambada DR, Yang S, Zhang G, Cheng B, Woldu YT, Shafique S, Wang Y, Anastase N (2018) Effects of mechanical strain on optical properties of ZnO nanowire. AIP Adv 8:025306-1–025306-14 Vazinishayan A, Lambada DR, Yang S, Zhang G, Cheng B, Woldu YT, Shafique S, Wang Y, Anastase N (2018) Effects of mechanical strain on optical properties of ZnO nanowire. AIP Adv 8:025306-1–025306-14
48.
Zurück zum Zitat Song S, Keum DH, Cho S, Perello D, Kim Y, Lee YH (2016) Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett 16:188–193 Song S, Keum DH, Cho S, Perello D, Kim Y, Lee YH (2016) Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett 16:188–193
49.
Zurück zum Zitat Manjanath A, Samanta A, Pandey T, Singh AK (2015) Semiconductor to metal transition in bilayer phosphorene under normal compressive strain. Nanotechnology 26:075701 Manjanath A, Samanta A, Pandey T, Singh AK (2015) Semiconductor to metal transition in bilayer phosphorene under normal compressive strain. Nanotechnology 26:075701
50.
Zurück zum Zitat Zhang Y, Chang TR, Zhou B, Cui YT, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng HT, Mo SK, Hussain Z, Bansil A, Shen ZX (2014) Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol 9:111–115 Zhang Y, Chang TR, Zhou B, Cui YT, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng HT, Mo SK, Hussain Z, Bansil A, Shen ZX (2014) Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol 9:111–115
51.
Zurück zum Zitat Signorello G, Lortscher E, Khomyakov PA, Karg S, Dheeraj DL, Gotsmann B, Weman H, Riel H (2014) Inducing a direct to pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nat Commun 5:3655-1–3655-8 Signorello G, Lortscher E, Khomyakov PA, Karg S, Dheeraj DL, Gotsmann B, Weman H, Riel H (2014) Inducing a direct to pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nat Commun 5:3655-1–3655-8
52.
Zurück zum Zitat Wang Y, Cong C, Yang W, Shang J, Peimyoo N, Chen Y, Kang J, Wang J, Huang W, Yu T (2015) Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res 8:2562–2572 Wang Y, Cong C, Yang W, Shang J, Peimyoo N, Chen Y, Kang J, Wang J, Huang W, Yu T (2015) Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res 8:2562–2572
53.
Zurück zum Zitat Desai SB, Seol G, Kang JS, Fang H, Battaglia C, Kapadia R, Ager JW, Guo J, Javey A (2014) Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett 14:4592–4597 Desai SB, Seol G, Kang JS, Fang H, Battaglia C, Kapadia R, Ager JW, Guo J, Javey A (2014) Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett 14:4592–4597
54.
Zurück zum Zitat Han X, Kou L, Zhang Z, Zhang Z, Zhu X, Xu J, Liao Z, Guo W, Yu D (2012) Strain-gradient effect on energy bands in bent ZnO microwires. Adv Mater 24:4707–4711 Han X, Kou L, Zhang Z, Zhang Z, Zhu X, Xu J, Liao Z, Guo W, Yu D (2012) Strain-gradient effect on energy bands in bent ZnO microwires. Adv Mater 24:4707–4711
55.
Zurück zum Zitat Liao ZM, Wu HC, Fu Q, Fu X, Zhu X, Xu J, Shvets IV, Zhang Z, Guo W, Wang YL, Zhao Q, Wu X, Yu D (2012) Strain-induced exciton fine structure splitting and shift in bent ZnO microwires. Sci Rep 2:452 Liao ZM, Wu HC, Fu Q, Fu X, Zhu X, Xu J, Shvets IV, Zhang Z, Guo W, Wang YL, Zhao Q, Wu X, Yu D (2012) Strain-induced exciton fine structure splitting and shift in bent ZnO microwires. Sci Rep 2:452
56.
Zurück zum Zitat Fu Q, Zhang ZY, Kou L, Wu P, Han X, Zhu X, Gao J, Xu J, Zhao Q, Guo W, Yu D (2011) Linear Strain-gradient effect on the energy bandgap in bent CdS nanowires. Nano Res 4:308–314 Fu Q, Zhang ZY, Kou L, Wu P, Han X, Zhu X, Gao J, Xu J, Zhao Q, Guo W, Yu D (2011) Linear Strain-gradient effect on the energy bandgap in bent CdS nanowires. Nano Res 4:308–314
57.
Zurück zum Zitat He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nanotechnol 1:42–46 He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nanotechnol 1:42–46
58.
Zurück zum Zitat Lugstein A, Steinmair M, Steiger A, Kosina H, Bertagnolli E (2010) Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett 10:3204–3208 Lugstein A, Steinmair M, Steiger A, Kosina H, Bertagnolli E (2010) Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett 10:3204–3208
59.
Zurück zum Zitat Zhang Y, Yan X, Yang Y, Huang Y, Liao Q, Qi J (2012) Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv Mater 24:4647–4655 Zhang Y, Yan X, Yang Y, Huang Y, Liao Q, Qi J (2012) Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv Mater 24:4647–4655
60.
Zurück zum Zitat Wang ZL (2007) Nanopiezotronics. Adv Mater 19:889–892 Wang ZL (2007) Nanopiezotronics. Adv Mater 19:889–892
61.
Zurück zum Zitat Gao Z, Zhou J, Gu Y, Fei P, Hao Y, Bao G, Wang ZL (2009) Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J Appl Phys 105:113707-1–113707-6 Gao Z, Zhou J, Gu Y, Fei P, Hao Y, Bao G, Wang ZL (2009) Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J Appl Phys 105:113707-1–113707-6
62.
Zurück zum Zitat Wang ZL, Song J (2006) Piezoelectric naogenerators based on zinc oxide nanowire arrays. Science 312:242–246 Wang ZL, Song J (2006) Piezoelectric naogenerators based on zinc oxide nanowire arrays. Science 312:242–246
63.
Zurück zum Zitat Toriyama T, Sugiyama S (2003) Single crystal silicon piezoresistive nano-wire bridge. Sens Actuat A 108:244–249 Toriyama T, Sugiyama S (2003) Single crystal silicon piezoresistive nano-wire bridge. Sens Actuat A 108:244–249
64.
Zurück zum Zitat Toriyama T, Tanimoto Y, Sugiyama S (2002) Single crystal silicon nano-wire piezoresistors for mechanical sensors. J Microelectromech Syst 11:605–611 Toriyama T, Tanimoto Y, Sugiyama S (2002) Single crystal silicon nano-wire piezoresistors for mechanical sensors. J Microelectromech Syst 11:605–611
65.
Zurück zum Zitat Phan HP, Kozeki T, Dinh T, Fujii T, Qamar A, Zhu Y, Namazu T, Nguyen NT, Dao DV (2015) Piezoresistive effect of p-type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching. RSC Adv 5:82121–82126 Phan HP, Kozeki T, Dinh T, Fujii T, Qamar A, Zhu Y, Namazu T, Nguyen NT, Dao DV (2015) Piezoresistive effect of p-type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching. RSC Adv 5:82121–82126
66.
Zurück zum Zitat Milne JS, Rowe ACH, Arscott S, Renner C (2010) Giant piezoresistance effects in silicon nanowires and microwires. Phys Rev Lett 105:226802 Milne JS, Rowe ACH, Arscott S, Renner C (2010) Giant piezoresistance effects in silicon nanowires and microwires. Phys Rev Lett 105:226802
67.
Zurück zum Zitat Suess MJ, Geiger R, Minamisawa RA, Schiefler G, Frigerio J, Chrastina D, Isella G, Spolenak R, Faist J, Sigg H (2013) Analysis of enhanced light emission from highly strained germanium microbridges. Nat Photon 7:466–472 Suess MJ, Geiger R, Minamisawa RA, Schiefler G, Frigerio J, Chrastina D, Isella G, Spolenak R, Faist J, Sigg H (2013) Analysis of enhanced light emission from highly strained germanium microbridges. Nat Photon 7:466–472
68.
Zurück zum Zitat Nam D, Sukhdeo DS, Kang JH, Petykiewicz J, Lee JH, Jung WS, Vuckovic J, Brongersma ML, Saraswat KC (2013) Strain-induced pseudoheterostructure nanowires confining carriers at room temperature with nanoscale-tunable band profiles. Nano Lett 13:3118–3123 Nam D, Sukhdeo DS, Kang JH, Petykiewicz J, Lee JH, Jung WS, Vuckovic J, Brongersma ML, Saraswat KC (2013) Strain-induced pseudoheterostructure nanowires confining carriers at room temperature with nanoscale-tunable band profiles. Nano Lett 13:3118–3123
69.
Zurück zum Zitat Sukhdeo DS, Nam D, Kang JH, Brongersma ML, Saraswat KC (2014) Direct bandgap germanium-on-silicon inferred from 5.7% <100> uniaxial tensile strain. Photon Res 2:A8–A13 Sukhdeo DS, Nam D, Kang JH, Brongersma ML, Saraswat KC (2014) Direct bandgap germanium-on-silicon inferred from 5.7% <100> uniaxial tensile strain. Photon Res 2:A8–A13
70.
Zurück zum Zitat Zhang X, Wu G (2016) Effect of strain on thermal conductivity of Si thin films. J Nanomater 2016:4984230 Zhang X, Wu G (2016) Effect of strain on thermal conductivity of Si thin films. J Nanomater 2016:4984230
71.
Zurück zum Zitat Zhu LL, Zheng XJ (2010) Stress field effects on phonon properties in spatially confined semiconductor nanostructures. CMC 18:301–320 Zhu LL, Zheng XJ (2010) Stress field effects on phonon properties in spatially confined semiconductor nanostructures. CMC 18:301–320
72.
Zurück zum Zitat Fu XW, Liao ZM, Liu R, Xu J, Yu D (2013) Size-dependent correlations between strain and phonon frequency in individual ZnO nanowires. ACS Nano 7:8891–8898 Fu XW, Liao ZM, Liu R, Xu J, Yu D (2013) Size-dependent correlations between strain and phonon frequency in individual ZnO nanowires. ACS Nano 7:8891–8898
73.
Zurück zum Zitat Grosse F, Zimmermann R (2007) Electron–phonon interaction in embedded semiconductor nanostructures. Phys Rev B 75:235320 Grosse F, Zimmermann R (2007) Electron–phonon interaction in embedded semiconductor nanostructures. Phys Rev B 75:235320
74.
Zurück zum Zitat Li X, Maute K, Dunn ML, Yang R (2010) Strain effects on the thermal conductivity of nanostructures. Phys Rev B 81:245318 Li X, Maute K, Dunn ML, Yang R (2010) Strain effects on the thermal conductivity of nanostructures. Phys Rev B 81:245318
75.
Zurück zum Zitat Xiang HJ, Yang J, Hou JG, Zhu Q (2006) Piezoelectricity in ZnO nanowires: a first principles study. Appl Phys Lett 89:223111 Xiang HJ, Yang J, Hou JG, Zhu Q (2006) Piezoelectricity in ZnO nanowires: a first principles study. Appl Phys Lett 89:223111
Metadaten
Titel
Effects of strain on various properties and applications on one-dimensional nano-/microstructures
verfasst von
Poulami Ghosh
Mingyuan Huang
Publikationsdatum
02.03.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04500-1

Weitere Artikel der Ausgabe 17/2020

Journal of Materials Science 17/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.