Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 2/2019

04.09.2018 | Original Article

Effects of the arterial radius and the center-line velocity on the conductivity and electrical impedance of pulsatile flow in the human common carotid artery

verfasst von: Hua Shen, Siqi Li, Yu Wang, Kai-Rong Qin

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to investigate the contribution of arterial radius and center-line velocity to the blood conductivity and electrical impedance of pulsatile flow in the human common carotid artery, we proposed three simplified mathematical models to describe the relationship between the center-line velocity, the arterial radius, and the blood conductivity. By comparing the fitting results with those obtained from our previously proposed elastic-tube hemodynamic model, we found that the change in center-line velocity had more notable effect on the blood conductivity than the change in arterial radius. Moreover, the change in arterial radius contributed much more to the electrical impedance than the change in blood conductivity induced by the center-line velocity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Manbachi A, Hoi Y, Wasserman BA, Lakatta EG, Steinman DA (2011) On the shape of the common carotid artery, with implications for blood velocity profiles. Physiol Meas 32(12):1885–1897PubMedPubMedCentralCrossRef Manbachi A, Hoi Y, Wasserman BA, Lakatta EG, Steinman DA (2011) On the shape of the common carotid artery, with implications for blood velocity profiles. Physiol Meas 32(12):1885–1897PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Yacoub M, Elguindy A, Afifi A, Yacoub L, Wright G (2014) Taking cardiac surgery to the people. J Cardiovasc Transl Res 7(9):797–802PubMedCrossRef Yacoub M, Elguindy A, Afifi A, Yacoub L, Wright G (2014) Taking cardiac surgery to the people. J Cardiovasc Transl Res 7(9):797–802PubMedCrossRef
3.
Zurück zum Zitat Apfel H (1990) Electrical impedance of the carotid artery in response to various types of stress. In: Biofluid Mechanics Blood Flow in Large Vessels. Springer-Verlag, Berlin Heidelberg, pp 193–200 Apfel H (1990) Electrical impedance of the carotid artery in response to various types of stress. In: Biofluid Mechanics Blood Flow in Large Vessels. Springer-Verlag, Berlin Heidelberg, pp 193–200
4.
Zurück zum Zitat Tomsin K, Mesens T, Molenberghs G, Gyselaers W (2011) Diurnal and position-induced variability of impedance cardiography measurements in healthy subjects. Clin Physiol Funct Imaging 31(2):145–150PubMed Tomsin K, Mesens T, Molenberghs G, Gyselaers W (2011) Diurnal and position-induced variability of impedance cardiography measurements in healthy subjects. Clin Physiol Funct Imaging 31(2):145–150PubMed
5.
Zurück zum Zitat Bernstein DP, Henry IC, Banet MJ, Dittrich T (2012) Stroke volume obtained by electrical interrogation of the brachial artery: transbrachial electrical bioimpedance velocimetry. Physiol Meas 33(4):629–649PubMedCrossRef Bernstein DP, Henry IC, Banet MJ, Dittrich T (2012) Stroke volume obtained by electrical interrogation of the brachial artery: transbrachial electrical bioimpedance velocimetry. Physiol Meas 33(4):629–649PubMedCrossRef
6.
Zurück zum Zitat Ebrahim M, Hegde S, Printz B, Abcede M, Proudfoot JA, Davis C (2016) Evaluation of impedance cardiography for measurement of stroke volume in congenital heart disease. Pediatr Cardiol 37(8):1–5CrossRef Ebrahim M, Hegde S, Printz B, Abcede M, Proudfoot JA, Davis C (2016) Evaluation of impedance cardiography for measurement of stroke volume in congenital heart disease. Pediatr Cardiol 37(8):1–5CrossRef
7.
Zurück zum Zitat Gaw RL, Cornish BH, Thomas BJ (2007) Comparison of a theoretical impedance model with experimental measurements of pulsatile blood flow. Proceedings 13th International Conference on Electrical Bio-impedance and the 8th Conference on Electrical Impedance Tomography ICEBI 2007(17): 32–35 Gaw RL, Cornish BH, Thomas BJ (2007) Comparison of a theoretical impedance model with experimental measurements of pulsatile blood flow. Proceedings 13th International Conference on Electrical Bio-impedance and the 8th Conference on Electrical Impedance Tomography ICEBI 2007(17): 32–35
8.
Zurück zum Zitat Gaw RL, Cornish BH, Thomas BJ (2008) The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation. IEEE Trans Biomed Eng 55(2):721–727PubMedCrossRef Gaw RL, Cornish BH, Thomas BJ (2008) The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation. IEEE Trans Biomed Eng 55(2):721–727PubMedCrossRef
9.
Zurück zum Zitat Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH (1966) Development and evaluation of an impedance cardiac output system. Aerosp Med 37(12):1208–1212PubMed Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH (1966) Development and evaluation of an impedance cardiac output system. Aerosp Med 37(12):1208–1212PubMed
10.
Zurück zum Zitat Peura RA, Penney BC, Arcuri J, Jr AF, Wheeler HB (1978) Influence of erythrocyte velocity on impedance plethysmographic measurements. Med Biol Eng Comput 16(2):147–154PubMedCrossRef Peura RA, Penney BC, Arcuri J, Jr AF, Wheeler HB (1978) Influence of erythrocyte velocity on impedance plethysmographic measurements. Med Biol Eng Comput 16(2):147–154PubMedCrossRef
11.
Zurück zum Zitat Raaijmakers E, Marcus JT, Goovaerts HG, De Vries PMJM, Faes TJC, Heethaar RM (1996) The influence of pulsatile flow on blood resistivity in impedance cardiograp. 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1957–1958 Raaijmakers E, Marcus JT, Goovaerts HG, De Vries PMJM, Faes TJC, Heethaar RM (1996) The influence of pulsatile flow on blood resistivity in impedance cardiograp. 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1957–1958
12.
Zurück zum Zitat Sakamoto K, Kanai H (1995) Electrical characteristics of flowing blood. IEEE Trans Biomed Eng BME-26(12):686–695CrossRef Sakamoto K, Kanai H (1995) Electrical characteristics of flowing blood. IEEE Trans Biomed Eng BME-26(12):686–695CrossRef
13.
Zurück zum Zitat Shankar TMR, Webster JG, Shao SY (1985) The contribution of vessel volume change and blood resistivity change to the electrical impedance pulse. IEEE Trans Biomed Eng 32(3):192–198CrossRef Shankar TMR, Webster JG, Shao SY (1985) The contribution of vessel volume change and blood resistivity change to the electrical impedance pulse. IEEE Trans Biomed Eng 32(3):192–198CrossRef
14.
Zurück zum Zitat Kosicki J, Chen LH, Hobbie R, Patterson R, Ackerman E (1986) Contributions to the impedance cardiogram waveform. Ann Biomed Eng 14(1):67–80PubMedCrossRef Kosicki J, Chen LH, Hobbie R, Patterson R, Ackerman E (1986) Contributions to the impedance cardiogram waveform. Ann Biomed Eng 14(1):67–80PubMedCrossRef
15.
Zurück zum Zitat Visser KR (1989) Electric properties of flowing blood and impedance cardiography. Ann Biomed Eng 17(5):463–473PubMedCrossRef Visser KR (1989) Electric properties of flowing blood and impedance cardiography. Ann Biomed Eng 17(5):463–473PubMedCrossRef
16.
Zurück zum Zitat Visser KR, Lamberts R, Zijlstra WG (1990) Investigation of the origin of the impedance cardiogram by means of exchange transfusion with stroma free haemoglobin solution in the dog. Cardiovasc Res 24(1):24–32PubMedCrossRef Visser KR, Lamberts R, Zijlstra WG (1990) Investigation of the origin of the impedance cardiogram by means of exchange transfusion with stroma free haemoglobin solution in the dog. Cardiovasc Res 24(1):24–32PubMedCrossRef
17.
Zurück zum Zitat Visser KR (1992) Electric conductivity of stationary and flowing human blood at low frequencies. Med Biol Eng Comput 30(6):636–640PubMedCrossRef Visser KR (1992) Electric conductivity of stationary and flowing human blood at low frequencies. Med Biol Eng Comput 30(6):636–640PubMedCrossRef
18.
Zurück zum Zitat Wtorek J, Poliński A (2005) The contribution of blood-flow-induced conductivity changes to measured impedance. IEEE Trans Biomed Eng 52(1):41–49PubMedCrossRef Wtorek J, Poliński A (2005) The contribution of blood-flow-induced conductivity changes to measured impedance. IEEE Trans Biomed Eng 52(1):41–49PubMedCrossRef
19.
Zurück zum Zitat Fujii M, Nakajima K, Sakamoto K, Kanai H (1999) Orientation and deformation of erythrocytes in flowing blood. Ann N Y Acad Sci 873(1):245–261PubMedCrossRef Fujii M, Nakajima K, Sakamoto K, Kanai H (1999) Orientation and deformation of erythrocytes in flowing blood. Ann N Y Acad Sci 873(1):245–261PubMedCrossRef
20.
Zurück zum Zitat Hoetink AE, Faes TJC, Visser KR, Heethaar RM (2004) On the flow dependency of the electrical conductivity of blood. IEEE Trans Biomed Eng 51(7):1251–1261PubMedCrossRef Hoetink AE, Faes TJC, Visser KR, Heethaar RM (2004) On the flow dependency of the electrical conductivity of blood. IEEE Trans Biomed Eng 51(7):1251–1261PubMedCrossRef
21.
Zurück zum Zitat Shen H, Zhu Y, Qin KR (2016) A theoretical computerized study for the electrical conductivity of arterial pulsatile blood flow by an elastic tube model. Med Eng Phys 38(12):1439–1448PubMedCrossRef Shen H, Zhu Y, Qin KR (2016) A theoretical computerized study for the electrical conductivity of arterial pulsatile blood flow by an elastic tube model. Med Eng Phys 38(12):1439–1448PubMedCrossRef
22.
Zurück zum Zitat Liu ZR, Xu G, Chen Y, Teng ZZ, Qin KR (2003) An analysis model of pulsatile blood flow in arteries. Appl Math Mech 24(2):230–240CrossRef Liu ZR, Xu G, Chen Y, Teng ZZ, Qin KR (2003) An analysis model of pulsatile blood flow in arteries. Appl Math Mech 24(2):230–240CrossRef
23.
Zurück zum Zitat Warriner R, Johnston K, Cobbold R (2008) A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment. Physiol Meas 29(2):157–179PubMedCrossRef Warriner R, Johnston K, Cobbold R (2008) A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment. Physiol Meas 29(2):157–179PubMedCrossRef
24.
Zurück zum Zitat Riahi DN (2017) On low frequency oscillatory elastic arterial blood flow with stenosis. Int J Appl Comput Math 3(1):1–16 Riahi DN (2017) On low frequency oscillatory elastic arterial blood flow with stenosis. Int J Appl Comput Math 3(1):1–16
25.
Zurück zum Zitat Ling SC, Atabek HB (1972) A nonlinear analysis of pulsatile flow in arteries. J Fluid Mech 55(3):493–511CrossRef Ling SC, Atabek HB (1972) A nonlinear analysis of pulsatile flow in arteries. J Fluid Mech 55(3):493–511CrossRef
26.
Zurück zum Zitat Fricke H (1924) A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Phys Rev 24(5):575–587CrossRef Fricke H (1924) A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Phys Rev 24(5):575–587CrossRef
27.
Zurück zum Zitat Sugawara M, Niki K, Furuhata H, Ohnishi S, Suzuki S (2000) Relationship between the pressure and diameter of the carotid artery in humans. Heart Vessels 15(1):49–51PubMedCrossRef Sugawara M, Niki K, Furuhata H, Ohnishi S, Suzuki S (2000) Relationship between the pressure and diameter of the carotid artery in humans. Heart Vessels 15(1):49–51PubMedCrossRef
28.
Zurück zum Zitat Heffernan KS, Jae SY, Wilund KR, Woods JA, Fernhall B (2008) Racial differences in central blood pressure and vascular function in young men. Ajp Heart Circ Physiol 295(6):2380–2387CrossRef Heffernan KS, Jae SY, Wilund KR, Woods JA, Fernhall B (2008) Racial differences in central blood pressure and vascular function in young men. Ajp Heart Circ Physiol 295(6):2380–2387CrossRef
29.
Zurück zum Zitat Flaud P, Bensalahk A (1970) Indirect instantaneous velocity profiles and wall shear rate measurements in arteries: a centre-line velocity method applied to non- newtonian fluids. Comput Simul Biomed III:191–199 Flaud P, Bensalahk A (1970) Indirect instantaneous velocity profiles and wall shear rate measurements in arteries: a centre-line velocity method applied to non- newtonian fluids. Comput Simul Biomed III:191–199
30.
Zurück zum Zitat Dutta A, Wang DM, Tarbell JM (1992) Numerical analysis of flow in an elastic artery model. J Biomech Eng 114(1):26–33PubMedCrossRef Dutta A, Wang DM, Tarbell JM (1992) Numerical analysis of flow in an elastic artery model. J Biomech Eng 114(1):26–33PubMedCrossRef
31.
Zurück zum Zitat Butcher JC (2008) Numerical methods for ordinary differential equations. John Wiley & Sons, New YorkCrossRef Butcher JC (2008) Numerical methods for ordinary differential equations. John Wiley & Sons, New YorkCrossRef
32.
Zurück zum Zitat Nelder JA, Mead R (1965) A simplex method for function minimization. Commput J 7(4):308–313CrossRef Nelder JA, Mead R (1965) A simplex method for function minimization. Commput J 7(4):308–313CrossRef
33.
Zurück zum Zitat Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the nelder--mead simplex method in low dimensions. Siam journal on optimization a publication of the Society for Industrial. Appl Math 9(1):112–147 Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the nelder--mead simplex method in low dimensions. Siam journal on optimization a publication of the Society for Industrial. Appl Math 9(1):112–147
Metadaten
Titel
Effects of the arterial radius and the center-line velocity on the conductivity and electrical impedance of pulsatile flow in the human common carotid artery
verfasst von
Hua Shen
Siqi Li
Yu Wang
Kai-Rong Qin
Publikationsdatum
04.09.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 2/2019
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-018-1889-x

Weitere Artikel der Ausgabe 2/2019

Medical & Biological Engineering & Computing 2/2019 Zur Ausgabe