Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.07.2022

Efficiency Enhancement of Reconfigurable SIW Antenna for Millimeter-Wave Applications

verfasst von: T. A. Balarajuswamy, R. Nakkeeran

Erschienen in: Wireless Personal Communications

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In this letter, a reconfigurable single elemental Substrate Integrated Waveguide (SIW) antenna is developed aimed at operating at 28 GHz as well as 38 GHz. The two PIN diodes used as switching elements shift the antenna resonance between 28 and 38 GHz when one of them is switched off. Also, dual bands are realized when both switches are made off. The developed antenna provides sufficient gain and enhanced efficiency to meet the requirements of 5G. This is accomplished by structural modifications of the SIW structure by stretching the flaring part of the tapered section introduced in the antenna. The tapered section provides good impedance matching. This reconfigurable SIW antenna uses Roger 5880 substrate and input coupling of K type connector. When S1 is turned off and S2 is turned on, the antenna responds at 38 GHz with a surge of 9.42 dBi along with 97.49 percent efficiency. As S1 is turned on and S2 is turned off, the antenna responds at 28 GHz with an increase of 7.33 dBi together with an efficiency of 98.54 percent. The antenna has a dual band response at 28 GHz along with 38 GHz with a gain of 7.23 dBi together with 9.6 dBi, and efficiency percentage of 99.14 percent and 96.96 percent when all PIN diodes are turned off. The simulations were performed using CST Studio Suite along with the computed outcomes are established in a better agreement with the simulation results.
Literatur
1.
Zurück zum Zitat Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Fallgren, M., et al. (2014). Scenarios for 5G mobile and Wireless Communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35. CrossRef Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Fallgren, M., et al. (2014). Scenarios for 5G mobile and Wireless Communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35. CrossRef
2.
Zurück zum Zitat Sulyman, A. I., Nassar, A. T., Samimi, M. K., Maccartney, G. R., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Communications Magazine, 52(9), 78–86. CrossRef Sulyman, A. I., Nassar, A. T., Samimi, M. K., Maccartney, G. R., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Communications Magazine, 52(9), 78–86. CrossRef
3.
Zurück zum Zitat Hong, W., Baek, K. H., Lee, Y., Kim, Y., & Ko, S. T. (2014). Study and prototyping of practically large-scale mm-Wave antenna systems for 5G cellular devices. IEEE Communications Magazine, 52(9), 63–69. CrossRef Hong, W., Baek, K. H., Lee, Y., Kim, Y., & Ko, S. T. (2014). Study and prototyping of practically large-scale mm-Wave antenna systems for 5G cellular devices. IEEE Communications Magazine, 52(9), 63–69. CrossRef
4.
Zurück zum Zitat Deng, C., Li, Y., Zhang, Z., Pan, G., & Feng, Z. (2013). Dual-band circularly polarized rotated patch antenna with a parasitic circular patch loading. IEEE Antennas Wireless Propag. Lett., 12, 492–495. CrossRef Deng, C., Li, Y., Zhang, Z., Pan, G., & Feng, Z. (2013). Dual-band circularly polarized rotated patch antenna with a parasitic circular patch loading. IEEE Antennas Wireless Propag. Lett., 12, 492–495. CrossRef
5.
Zurück zum Zitat Narbudowicz, A., Bao, X. L., & Ammann, M. J. (2013). Dual-band omnidirectional circularly polarized antenna. IEEE Transactions on Antennas and Propagation, 61(1), 77–83. CrossRef Narbudowicz, A., Bao, X. L., & Ammann, M. J. (2013). Dual-band omnidirectional circularly polarized antenna. IEEE Transactions on Antennas and Propagation, 61(1), 77–83. CrossRef
6.
Zurück zum Zitat M. Bozzi, A. Georgiadis, and K. Wu, “Review of substrate-integrated waveguide circuits and antennas,” IET Microw., Antennas Propag., vol. 5, no. 8, pp. 909–920, Jun. 6, 2011. M. Bozzi, A. Georgiadis, and K. Wu, “Review of substrate-integrated waveguide circuits and antennas,” IET Microw., Antennas Propag., vol. 5, no. 8, pp. 909–920, Jun. 6, 2011.
7.
Zurück zum Zitat Chen, C. H., & Yung, E. K. N. (2011). Dual-band circularly-polarized CPW- fed slot antenna with a small frequency ratio and wide bandwidths. IEEE Transactions on Antennas and Propagation, 59(4), 1379–1384. MathSciNetCrossRef Chen, C. H., & Yung, E. K. N. (2011). Dual-band circularly-polarized CPW- fed slot antenna with a small frequency ratio and wide bandwidths. IEEE Transactions on Antennas and Propagation, 59(4), 1379–1384. MathSciNetCrossRef
8.
Zurück zum Zitat Chen, H. D., & Chen, H. T. (2004). A CPW-fed dual-frequency monopole antenna. IEEE Transactions on Antennas and Propagation, 52(4), 978–982. CrossRef Chen, H. D., & Chen, H. T. (2004). A CPW-fed dual-frequency monopole antenna. IEEE Transactions on Antennas and Propagation, 52(4), 978–982. CrossRef
9.
Zurück zum Zitat T. Zhang, W. Hong, Y. Zhang, and K. Wu, “Design and Analysis of SIW Cavity Backed Dual-Band Antennas with a Dual-Mode Triangular-Ring Slot,” IEEE Trans. Antennas Propag., 2014. T. Zhang, W. Hong, Y. Zhang, and K. Wu, “Design and Analysis of SIW Cavity Backed Dual-Band Antennas with a Dual-Mode Triangular-Ring Slot,” IEEE Trans. Antennas Propag., 2014.
10.
Zurück zum Zitat Kim, S., Cook, B., Cooper, J., Traille, A., Georgiadis, A., Aubert, H., & Tentzeris, M. M. (2013). A novel dual-band retro-directive reflector array on paper utilizing Substrate Integrated Waveguide (SIW) and inkjet printing technologies for chipless RFID tag and sensor applications (pp. 1–4). IEEE Microwave Symposium Digest. Kim, S., Cook, B., Cooper, J., Traille, A., Georgiadis, A., Aubert, H., & Tentzeris, M. M. (2013). A novel dual-band retro-directive reflector array on paper utilizing Substrate Integrated Waveguide (SIW) and inkjet printing technologies for chipless RFID tag and sensor applications (pp. 1–4). IEEE Microwave Symposium Digest.
11.
Zurück zum Zitat Mbaye, M., Hautcoeur, J., Talbi, L., & Hettak, K. (2013). Bandwidth Broadening of Dual-Slot Antenna Using Substrate Integrated Waveguide (SIW). IEEE Antennas Wireless Propag. Lett., 12, 1169–1171. CrossRef Mbaye, M., Hautcoeur, J., Talbi, L., & Hettak, K. (2013). Bandwidth Broadening of Dual-Slot Antenna Using Substrate Integrated Waveguide (SIW). IEEE Antennas Wireless Propag. Lett., 12, 1169–1171. CrossRef
12.
Zurück zum Zitat A. Srivastava, K. C. Raghvendra, A. Biswas, and M. A. Jaleel, “Dual band L-shaped SIW Slot antenna,” International Conference on Microwave and Photonics (ICMAP), 2013. A. Srivastava, K. C. Raghvendra, A. Biswas, and M. A. Jaleel, “Dual band L-shaped SIW Slot antenna,” International Conference on Microwave and Photonics (ICMAP), 2013.
13.
Zurück zum Zitat Ashutosh Srivastava, Raghvendra Kumar Chaudhary, Animesh Biswas and M. Jaleel Akhtar, “Dual-band C-shaped Circular Slot SIW Antenna,” IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications, (iAIM) , Bangalore, India, 24–26 Nov. 2017. Ashutosh Srivastava, Raghvendra Kumar Chaudhary, Animesh Biswas and M. Jaleel Akhtar, “Dual-band C-shaped Circular Slot SIW Antenna,” IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications, (iAIM) , Bangalore, India, 24–26 Nov. 2017.
14.
Zurück zum Zitat Lemey, S., Declercq, F., & Rogier, H. (2014). Dual-band substrate integrated waveguide textile antenna with integrated solar harvester. IEEE Antennas Wireless Propag. Lett., 13, 269–272. CrossRef Lemey, S., Declercq, F., & Rogier, H. (2014). Dual-band substrate integrated waveguide textile antenna with integrated solar harvester. IEEE Antennas Wireless Propag. Lett., 13, 269–272. CrossRef
15.
Zurück zum Zitat S. Mukherjee, K. V. Srivastava, and A. Biswas, “Implementation of dual- frequency longitudinal slot array antenna on substrate integrated waveguide at X-band,” IEEE European Microwave Conference (EuMC), pp. 195–198, 2013. S. Mukherjee, K. V. Srivastava, and A. Biswas, “Implementation of dual- frequency longitudinal slot array antenna on substrate integrated waveguide at X-band,” IEEE European Microwave Conference (EuMC), pp. 195–198, 2013.
16.
Zurück zum Zitat Ashraf, N., Vettikalladi, H., Alkanhal, M.A.S., "Substrate integrated waveguide antennas/array for 60 GHz wireless communication systems," RF and Microwave Conference (RFM), 2013 IEEE International, pp. 56–61, 9–11 Dec. 2013. Ashraf, N., Vettikalladi, H., Alkanhal, M.A.S., "Substrate integrated waveguide antennas/array for 60 GHz wireless communication systems," RF and Microwave Conference (RFM), 2013 IEEE International, pp. 56–61, 9–11 Dec. 2013.
17.
Zurück zum Zitat Elboushi, A., Haraz, O.M., Sebak, A.-R, "Circularly-polarized SIW slot antenna for MMW applications," IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 648–649, 7–13 July 2013. Elboushi, A., Haraz, O.M., Sebak, A.-R, "Circularly-polarized SIW slot antenna for MMW applications," IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 648–649, 7–13 July 2013.
18.
Zurück zum Zitat Haraz, O. M., Elboushi, A., Alshebeili, S. A., & Sebak, A. R. (2014). Dense Dielectric Patch Array Antenna with Improved Radiation Characteristics Using EBG Ground Structure and Dielectric Superstrate for Future 5G Cellular Networks. Access, IEEE, 2, 909–913. CrossRef Haraz, O. M., Elboushi, A., Alshebeili, S. A., & Sebak, A. R. (2014). Dense Dielectric Patch Array Antenna with Improved Radiation Characteristics Using EBG Ground Structure and Dielectric Superstrate for Future 5G Cellular Networks. Access, IEEE, 2, 909–913. CrossRef
19.
Zurück zum Zitat Nadeem Ashraf, Osama Haraz, Muhammad A. Ashraf and Saleh Alshebeili, “28/38-GHz Dual-Band Millimeter Wave SIW Array Antenna with EBG Structures for 5G Applications,” IEEE International conference on Information and Communication Technology Research (ICTRC 2015), pp. 5–8, Abu Dhabi, United Arab Emirates, 17–19 May 2015. Nadeem Ashraf, Osama Haraz, Muhammad A. Ashraf and Saleh Alshebeili, “28/38-GHz Dual-Band Millimeter Wave SIW Array Antenna with EBG Structures for 5G Applications,” IEEE International conference on Information and Communication Technology Research (ICTRC 2015), pp. 5–8, Abu Dhabi, United Arab Emirates, 17–19 May 2015.
21.
Zurück zum Zitat Ashraf, N. (2016). Osama Mohamed Haraz, Mohamed Mamdouh Mahmoud Ali, Mohamed Ahmad Ashraf, Saleh Abdullah Saleh Alshebili, “Optimized broadband and dual-band printed slot antennas for future millimeter wave mobile communication.” AEU - International Journal of Electronics and Communications, 70(3), 257–264. CrossRef Ashraf, N. (2016). Osama Mohamed Haraz, Mohamed Mamdouh Mahmoud Ali, Mohamed Ahmad Ashraf, Saleh Abdullah Saleh Alshebili, “Optimized broadband and dual-band printed slot antennas for future millimeter wave mobile communication.” AEU - International Journal of Electronics and Communications, 70(3), 257–264. CrossRef
22.
Zurück zum Zitat Marzouk, H. M., Ahmed, M. I., & Shaalan, A. A. (2019). Novel Dual-Band 28/38 GHz MIMO Antennas for 5G Mobile Applications. Progress In Electromagnetics Research C, 93, 103–117. CrossRef Marzouk, H. M., Ahmed, M. I., & Shaalan, A. A. (2019). Novel Dual-Band 28/38 GHz MIMO Antennas for 5G Mobile Applications. Progress In Electromagnetics Research C, 93, 103–117. CrossRef
23.
Zurück zum Zitat Osama M. Haraz, Mohamed Mamdouh M. Ali , Saleh Alshebeili and Abdel-Razik Sebak, “Design of a 28/38 GHz Dual-Band Printed Slot Antenna for the Future 5G Mobile Communication Networks,” IEEE AP-S Symposium on Antennas and Propagation and URSI CNC/USNC Joint Meeting, Vancouver, July 2015. Osama M. Haraz, Mohamed Mamdouh M. Ali , Saleh Alshebeili and Abdel-Razik Sebak, “Design of a 28/38 GHz Dual-Band Printed Slot Antenna for the Future 5G Mobile Communication Networks,” IEEE AP-S Symposium on Antennas and Propagation and URSI CNC/USNC Joint Meeting, Vancouver, July 2015.
24.
Zurück zum Zitat H. Ahmed, S. H. Bouk, N. Javaid and I. Sasase, Combined Human, Antenna Orientation in Elevation Direction and Ground Effect on RSSI in Wireless Sensor Networks, 2012 10th International Conference on Frontiers of Information Technology, 2012, pp. 46–49, doi: https://​doi.​org/​10.​1109/​FIT.​2012.​17. H. Ahmed, S. H. Bouk, N. Javaid and I. Sasase, Combined Human, Antenna Orientation in Elevation Direction and Ground Effect on RSSI in Wireless Sensor Networks, 2012 10th International Conference on Frontiers of Information Technology, 2012, pp. 46–49, doi: https://​doi.​org/​10.​1109/​FIT.​2012.​17.
26.
Zurück zum Zitat J. Mendoza, G. Mumcu, “Mm-Wave Frequency Reconfigurable Antenna with Multilayer Integrated Microfluidic Actuation,” IEEE International Symposium on Antennas and Propagation North American Radio Science Meeting, Montreal, QC, Canada, 10 July 2020. J. Mendoza, G. Mumcu, “Mm-Wave Frequency Reconfigurable Antenna with Multilayer Integrated Microfluidic Actuation,” IEEE International Symposium on Antennas and Propagation North American Radio Science Meeting, Montreal, QC, Canada, 10 July 2020.
Metadaten
Titel
Efficiency Enhancement of Reconfigurable SIW Antenna for Millimeter-Wave Applications
verfasst von
T. A. Balarajuswamy
R. Nakkeeran
Publikationsdatum
04.07.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09892-8