Skip to main content
Erschienen in: Strength of Materials 2/2022

14.06.2022

Efficiency of the Pendulum Damper with a Mobile Suspension Point

verfasst von: V. P. Legeza

Erschienen in: Strength of Materials | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper posed and solved a new dynamic problem, which is a generalization of the well-known classical problem of suppressing forced vibrations of high-rise flexible objects with the use of pendulum dampers. A mathematical model describing forced vibrations of a vibroprotection system equipped with a pendulum damper and a movable suspension point was built. The model is a system of nonlinear differential equations, after linearization and averaging of which for one period, the formula for the frequency response of the vibroprotection system was established. Within the framework of the obtained model, the frequency formula for small natural vibrations of the proposed absorber was also obtained and analyzed. The main regulating parameters of the damper was established, which determine its optimal tuning to the frequency of the carrier object. It is shown that the natural vibration frequency of the new damper coincides with the natural vibration frequency of a classical mathematical pendulum with an equivalent suspension length, which is equal to Leq = L + mg/k. If the suspension point is fixed (k →∞), the frequency equation turns into a well-known formula for the frequency \( \upomega =\sqrt{g/L} \) of small natural oscillations of a mathematical pendulum. If the value of the stiffness coefficient of elastic elements tends to zero (k →0), the frequency of the absorber also tends to zero. An important design feature of the proposed pendulum is noted, which consists in the fact that due to the appropriate choice of three control parameters of the pendulum (k, L, and m), its frequency, if necessary, can be made any in the range from zero to \( \sqrt{g/L}. \) Numerical analysis of the dynamic behavior of the vibroprotection system showed a high efficiency of the proposed absorber. With the optimal adjustment of the damper parameters, the level of amplitudes of forced vibrations of the carrier body can be reduced by more than five times.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. P. Legeza, Vibroprotection of Dynamic Systems with Rolling Dampers [in Ukrainian], Chetverta Khvylya, Kyiv (2010). V. P. Legeza, Vibroprotection of Dynamic Systems with Rolling Dampers [in Ukrainian], Chetverta Khvylya, Kyiv (2010).
2.
Zurück zum Zitat V. P. Legeza, Theory of vibroprotection of Systems Using Isochronous Rolling Dampers: Models, Methods, Dynamic Analysis, Technical Solutions, Lambert Academic Publishing, Saarbrücken (2013). V. P. Legeza, Theory of vibroprotection of Systems Using Isochronous Rolling Dampers: Models, Methods, Dynamic Analysis, Technical Solutions, Lambert Academic Publishing, Saarbrücken (2013).
3.
Zurück zum Zitat V. P. Legeza, I. A. Dychka, and Ya. V. Bovkun, “Vibration suppression of wires and cables using a dual-mass pendulum damper,” Electr. Sistem. Seti, No. 2, 7–13 (2016). V. P. Legeza, I. A. Dychka, and Ya. V. Bovkun, “Vibration suppression of wires and cables using a dual-mass pendulum damper,” Electr. Sistem. Seti, No. 2, 7–13 (2016).
4.
5.
6.
Zurück zum Zitat B. G. Korenev and I. G. Rabinovich (Eds.), Dynamic Calculation of Buildings and Structures: Designer’s Handbook [in Russian], Stroiizdat, Moscow (1984). B. G. Korenev and I. G. Rabinovich (Eds.), Dynamic Calculation of Buildings and Structures: Designer’s Handbook [in Russian], Stroiizdat, Moscow (1984).
7.
Zurück zum Zitat B. V. Ostroumov, “Dynamic damper of vibrations in the form of an inverted pendulum with damping,” Izv. Vuzov. Stroitelstvo, No. 9, 36–38 (2002). B. V. Ostroumov, “Dynamic damper of vibrations in the form of an inverted pendulum with damping,” Izv. Vuzov. Stroitelstvo, No. 9, 36–38 (2002).
8.
Zurück zum Zitat B. V. Ostroumov, “Calculation of structures with dynamic damper of vibrations,” Prom. Grazhd. Stroit., No. 5, 18–22 (2003). B. V. Ostroumov, “Calculation of structures with dynamic damper of vibrations,” Prom. Grazhd. Stroit., No. 5, 18–22 (2003).
9.
Zurück zum Zitat J. M. W. Brownjohn and T.-C. Pan, “Response of tall building to weak long distance earthquakes,” Earthq. Eng. Struct. D., 30, 709–729 (2001).CrossRef J. M. W. Brownjohn and T.-C. Pan, “Response of tall building to weak long distance earthquakes,” Earthq. Eng. Struct. D., 30, 709–729 (2001).CrossRef
10.
Zurück zum Zitat B. Diveyev, I. Vikovych, I. Dorosh, and I. Kernytskyy, “Different type vibration absorbers design for beam-like structures,” in: Proc. of ICSV19 (Vilnius, Lithuania, 2012), pp. 1499–1506. B. Diveyev, I. Vikovych, I. Dorosh, and I. Kernytskyy, “Different type vibration absorbers design for beam-like structures,” in: Proc. of ICSV19 (Vilnius, Lithuania, 2012), pp. 1499–1506.
11.
Zurück zum Zitat M. K. S. Madugula (Ed.), Dynamic Response of Lattice Towers and Guyed Masts, SEI & ASCE (2002). M. K. S. Madugula (Ed.), Dynamic Response of Lattice Towers and Guyed Masts, SEI & ASCE (2002).
12.
Zurück zum Zitat R. R. Gerges and B. J. Vickery, “Wind tunnel study of the across-wind response of a slender tower with a nonlinear tuned mass damper,” J. Wind Eng. Ind. Aerod., 91, No. 8, 1069–1092 (2003).CrossRef R. R. Gerges and B. J. Vickery, “Wind tunnel study of the across-wind response of a slender tower with a nonlinear tuned mass damper,” J. Wind Eng. Ind. Aerod., 91, No. 8, 1069–1092 (2003).CrossRef
13.
Zurück zum Zitat H. W. Klein and W. Kaldenbach, “A new vibration damping facility for steel chimneys,” in: Proc. of Conf. on Mechanics in Design (Trent University of Nottingham, UK) (1998), pp. 265–273. H. W. Klein and W. Kaldenbach, “A new vibration damping facility for steel chimneys,” in: Proc. of Conf. on Mechanics in Design (Trent University of Nottingham, UK) (1998), pp. 265–273.
14.
Zurück zum Zitat B. G. Korenev and L. M. Reznikov, Dynamic Vibration Absorbers: Theory and Technical Applications, John Wiley and Sons Ltd., Chichester, UK (1993). B. G. Korenev and L. M. Reznikov, Dynamic Vibration Absorbers: Theory and Technical Applications, John Wiley and Sons Ltd., Chichester, UK (1993).
16.
Zurück zum Zitat I. A. Vikovich, B. M. Diveev, and V. E. Martyn, “Application of different types of pendulum dynamic vibration dampers,” Visn. NTU, No. 29 (1), 26–33 (2014). I. A. Vikovich, B. M. Diveev, and V. E. Martyn, “Application of different types of pendulum dynamic vibration dampers,” Visn. NTU, No. 29 (1), 26–33 (2014).
17.
Zurück zum Zitat C. C. Chang and W. L. Qu, “Unified dynamic absorber design formulas for wind-induced vibration control of tall building,” Struct. Des. Tall Buil., 7, No. 2, 147–166 (1998).CrossRef C. C. Chang and W. L. Qu, “Unified dynamic absorber design formulas for wind-induced vibration control of tall building,” Struct. Des. Tall Buil., 7, No. 2, 147–166 (1998).CrossRef
18.
Zurück zum Zitat C. C. Chang, “Mass dampers and their optimal designs for building vibration control,” Eng. Struct., 21, No. 5, 454–463 (1999).CrossRef C. C. Chang, “Mass dampers and their optimal designs for building vibration control,” Eng. Struct., 21, No. 5, 454–463 (1999).CrossRef
20.
Zurück zum Zitat J. P. Den Hartog, Mechanics, Courier Corporation (2013). J. P. Den Hartog, Mechanics, Courier Corporation (2013).
21.
Zurück zum Zitat J. P. Den Hartog, Mechanical Vibrations, Courier Corporation (2013). J. P. Den Hartog, Mechanical Vibrations, Courier Corporation (2013).
22.
Zurück zum Zitat J. Naprstek and C. Fischer, “Non-holonomic planar and spatial model of a ball-type tuned mass damping device,” in: Proc. of 23th Int. Conf. “Engineering Mechanics-2017” (May 15–18, 2017, Svratka, Czech Republic), Vol. 23 (2017), pp. 698–701. J. Naprstek and C. Fischer, “Non-holonomic planar and spatial model of a ball-type tuned mass damping device,” in: Proc. of 23th Int. Conf. “Engineering Mechanics-2017” (May 15–18, 2017, Svratka, Czech Republic), Vol. 23 (2017), pp. 698–701.
23.
Zurück zum Zitat J. Naprstek and C. Fischer, “Forced movement of a ball in spherical cavity under kinematic excitation,” in: Proc. of 24th Int. Conf. “Engineering Mechanics-2018” (May 14–17, 2018, Svratka, Czech Republic), Vol. 24 (2018), pp. 573–576. J. Naprstek and C. Fischer, “Forced movement of a ball in spherical cavity under kinematic excitation,” in: Proc. of 24th Int. Conf. “Engineering Mechanics-2018” (May 14–17, 2018, Svratka, Czech Republic), Vol. 24 (2018), pp. 573–576.
24.
Zurück zum Zitat ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings, Vol. 1, Applied Technology Council, Redwood City, CA (1996). ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings, Vol. 1, Applied Technology Council, Redwood City, CA (1996).
25.
Zurück zum Zitat ASCE 41-06. Seismic Rehabilitation of Existing Buildings, American Society of Civil Engineers (2007). ASCE 41-06. Seismic Rehabilitation of Existing Buildings, American Society of Civil Engineers (2007).
26.
Zurück zum Zitat B. M. Diveev, D. L. Parashchuk, R. V. Savva, and G. T. Cherchyk, “Influence of parameters of vibroprotection object and dynamic vibration damper on energy efficiency of vibration absorption,” Nauk. Notatky, Issue 41, Pt. 2, 28–33 (2013). B. M. Diveev, D. L. Parashchuk, R. V. Savva, and G. T. Cherchyk, “Influence of parameters of vibroprotection object and dynamic vibration damper on energy efficiency of vibration absorption,” Nauk. Notatky, Issue 41, Pt. 2, 28–33 (2013).
27.
Zurück zum Zitat C. L. Lee, Y. T. Chen, L. L. Chung, and Y. P. Wang, “Optimal design theories and applications of tuned mass dampers,” Eng. Struct., 28, No. 1, 43–53 (2006).CrossRef C. L. Lee, Y. T. Chen, L. L. Chung, and Y. P. Wang, “Optimal design theories and applications of tuned mass dampers,” Eng. Struct., 28, No. 1, 43–53 (2006).CrossRef
28.
Zurück zum Zitat A. Y. T. Leung and H. J. Zhang, “Particle swarm optimization of tuned mass dampers,” Eng. Struct., 31, No. 3, 715–728 (2009).CrossRef A. Y. T. Leung and H. J. Zhang, “Particle swarm optimization of tuned mass dampers,” Eng. Struct., 31, No. 3, 715–728 (2009).CrossRef
29.
Zurück zum Zitat I. A. Karnovsky and E. Lebed, Theory of Vibration Protection, Springer (2016). I. A. Karnovsky and E. Lebed, Theory of Vibration Protection, Springer (2016).
30.
Zurück zum Zitat S. Graham Kelly, Mechanical Vibrations: Theory and Applications, Cengage Learning (2012). S. Graham Kelly, Mechanical Vibrations: Theory and Applications, Cengage Learning (2012).
31.
Zurück zum Zitat A. I. Lurie, Analytical Mechanics, Springer (2002). A. I. Lurie, Analytical Mechanics, Springer (2002).
32.
Zurück zum Zitat DBN B.1.2-2:2006. Loads and Effects. Design Norms [in Ukrainian], Minbud of Ukraine, Kyiv (2006). DBN B.1.2-2:2006. Loads and Effects. Design Norms [in Ukrainian], Minbud of Ukraine, Kyiv (2006).
Metadaten
Titel
Efficiency of the Pendulum Damper with a Mobile Suspension Point
verfasst von
V. P. Legeza
Publikationsdatum
14.06.2022
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 2/2022
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00395-2

Weitere Artikel der Ausgabe 2/2022

Strength of Materials 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.