1 Introduction
2 Numerical method
2.1 Formulation of the equations
2.2 The finite volume scheme
2.3 A novel WENO reconstruction in primitive variables
2.4 A local space-time DG predictor in primitive variables
2.4.1 Description of the predictor
2.4.2 An efficient initial guess for the predictor
MUSCL-CN
|
Adams-Bashforth
| |
---|---|---|
\(\mathbb{P}_{0}\mathbb{P}_{2}\)
| 1.0 | 0.64 |
\(\mathbb{P}_{0}\mathbb{P}_{3}\)
| 1.0 | 0.75 |
\(\mathbb{P}_{0}\mathbb{P}_{4}\)
| 1.0 | 0.72 |
3 Numerical tests with the new ADER-WENO finite volume scheme in primitive variables
3.1 Euler equations
3.1.1 2D isentropic vortex
2D isentropic vortex problem
| ||||||||
---|---|---|---|---|---|---|---|---|
\(\boldsymbol{N}_{\boldsymbol{x}}\)
|
ADER-Prim
|
ADER-Cons
|
ADER-Char
|
Theor.
| ||||
\(\boldsymbol{L}_{\boldsymbol{2}}\)
error
|
\(\boldsymbol{L}_{\boldsymbol{2}}\)
order
|
\(\boldsymbol{L}_{\boldsymbol{2}}\)
error
|
\(\boldsymbol{L}_{\boldsymbol{2}}\)
order
|
\(\boldsymbol{L}_{\boldsymbol{2}}\)
error
|
\(\boldsymbol{L}_{\boldsymbol{2}}\)
order
| |||
\(\mathbb{P}_{0}\mathbb{P}_{2}\)
| 100 | 4.060E-03 | - | 5.028E-03 | - | 5.010E-03 | - | 3 |
120 | 2.359E-03 | 2.98 | 2.974E-03 | 2.88 | 2.968E-03 | 2.87 | ||
140 | 1.489E-03 | 2.98 | 1.897E-03 | 2.92 | 1.893E-03 | 2.92 | ||
160 | 9.985E-04 | 2.99 | 1.281E-03 | 2.94 | 1.279E-03 | 2.94 | ||
200 | 5.118E-04 | 2.99 | 6.612E-04 | 2.96 | 6.607E-04 | 2.96 | ||
\(\mathbb{P}_{0}\mathbb{P}_{3}\)
| 50 | 2.173E-03 | - | 4.427E-03 | - | 5.217E-03 | - | 4 |
60 | 8.831E-04 | 4.93 | 1.721E-03 | 5.18 | 2.232E-03 | 4.65 | ||
70 | 4.177E-04 | 4.85 | 8.138E-04 | 4.85 | 1.082E-03 | 4.69 | ||
80 | 2.194E-04 | 4.82 | 4.418E-04 | 4.57 | 5.746E-04 | 4.74 | ||
100 | 7.537E-05 | 4.79 | 1.605E-04 | 4.53 | 1.938E-04 | 4.87 | ||
\(\mathbb{P}_{0}\mathbb{P}_{4}\)
| 50 | 2.165E-03 | - | 3.438E-03 | - | 3.416E-03 | - | 5 |
60 | 6.944E-04 | 6.23 | 1.507E-03 | 4.52 | 1.559E-03 | 4.30 | ||
70 | 3.292E-04 | 4.84 | 7.615E-04 | 4.43 | 7.615E-04 | 4.65 | ||
80 | 1.724E-04 | 4.84 | 4.149E-04 | 4.55 | 4.148E-04 | 4.55 | ||
100 | 5.884E-05 | 4.82 | 1.449E-04 | 4.71 | 1.448E-04 | 4.72 |
3.1.2 Sod’s Riemann problem
ADER-Prim
|
ADER-Cons
|
ADER-Char
| |
---|---|---|---|
\(\mathbb{P}_{0}\mathbb{P}_{2}\)
| 1.0 | 0.74 | 0.81 |
\(\mathbb{P}_{0}\mathbb{P}_{3}\)
| 1.0 | 0.74 | 0.80 |
\(\mathbb{P}_{0}\mathbb{P}_{4}\)
| 1.0 | 0.77 | 0.81 |
3.1.3 Interacting blast waves
3.1.4 Double Mach reflection problem
3.2 Relativistic hydrodynamics and magnetohydrodynamics
3.2.1 RHD Riemann problems
Problem
|
γ
|
ρ
|
\(\boldsymbol{v}_{\boldsymbol{x}}\)
|
p
|
\(\boldsymbol{t}_{\boldsymbol{f}}\)
| |
---|---|---|---|---|---|---|
RHD-RP1 |
x>0 | 5/3 | 1 | −0.6 | 10 | 0.4 |
x ≤ 0 | 10 | 0.5 | 20 | |||
RHD-RP2 |
x>0 | 5/3 | 10−3
| 0.0 | 1 | 0.4 |
x ≤ 0 | 10−3
| 0.0 | 10−5
|
ADER-Prim
|
ADER-Cons
|
ADER-Char
| |
---|---|---|---|
\(\mathbb{P}_{0}\mathbb{P}_{2}\)
| 1.0 | 1.26 | 1.40 |
\(\mathbb{P}_{0}\mathbb{P}_{3}\)
| 1.0 | 1.13 | 1.24 |
\(\mathbb{P}_{0}\mathbb{P}_{4}\)
| 1.0 | 1.04 | 1.06 |
3.2.2 RHD Kelvin-Helmholtz instability
3.2.3 RMHD Alfvén wave
2D circularly polarized Alfvén wave
| ||||||
---|---|---|---|---|---|---|
\(\boldsymbol{N}_{\boldsymbol{x}}\)
|
\(\boldsymbol{L}_{\boldsymbol{1}}\)
error
|
\(\boldsymbol{L}_{\boldsymbol{1}}\)
order
|
\(\boldsymbol{L}_{\boldsymbol{2}}\)
error
|
\(\boldsymbol{L}_{\boldsymbol{2}}\)
order
|
Theor.
| |
\(\mathbb{P}_{0}\mathbb{P}_{2}\)
| 50 | 5.387E-02 | - | 9.527E-03 | - | 3 |
60 | 3.123E-02 | 2.99 | 5.523E-03 | 2.99 | ||
70 | 1.969E-02 | 2.99 | 3.481E-03 | 2.99 | ||
80 | 1.320E-02 | 2.99 | 2.334E-03 | 2.99 | ||
100 | 6.764E-03 | 3.00 | 1.196E-03 | 3.00 | ||
\(\mathbb{P}_{0}\mathbb{P}_{3}\)
| 50 | 2.734E-04 | - | 4.888E-05 | - | 4 |
60 | 1.153E-04 | 4.73 | 2.061E-05 | 4.74 | ||
70 | 5.622E-05 | 4.66 | 1.004E-05 | 4.66 | ||
80 | 3.043E-05 | 4.60 | 5.422E-06 | 4.61 | ||
100 | 1.108E-05 | 4.53 | 1.968E-06 | 4.54 | ||
\(\mathbb{P}_{0}\mathbb{P}_{4}\)
| 30 | 2.043E-03 | - | 3.611E-04 | - | 5 |
40 | 4.873E-04 | 4.98 | 8.615E-05 | 4.98 | ||
50 | 1.603E-04 | 4.98 | 2.846E-05 | 4.96 | ||
60 | 6.491E-05 | 4.96 | 1.168E-05 | 4.88 | ||
70 | 3.173E-05 | 4.64 | 6.147E-06 | 4.16 |
3.2.4 RMHD Riemann problems
Problem
|
γ
|
ρ
|
\(\boldsymbol{(v}_{\boldsymbol{x}}\)
|
\(\boldsymbol{v}_{\boldsymbol{y}} \)
|
\(\boldsymbol{v}_{\boldsymbol{z}}\boldsymbol{)}\)
|
p
|
\(\boldsymbol{(B}_{\boldsymbol{x}} \)
|
\(\boldsymbol{B}_{\boldsymbol{y}} \)
|
\(\boldsymbol{B}_{\boldsymbol{z}}\boldsymbol{)}\)
|
\(\boldsymbol{t}_{\boldsymbol{f}}\)
| |
---|---|---|---|---|---|---|---|---|---|---|---|
RMHD-RP1 |
x>0 | 2.0 | 0.125 | 0.0 | 0.0 | 0.0 | 0.1 | 0.5 | −1.0 | 0.0 | 0.4 |
x ≤ 0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.5 | 1.0 | 0.0 | |||
RMHD-RP2 |
x>0 | 5/3 | 1.0 | −0.45 | −0.2 | 0.2 | 1.0 | 2.0 | −0.7 | 0.5 | 0.55 |
x ≤ 0 | 1.08 | 0.4 | 0.3 | 0.2 | 0.95 | 2.0 | 0.3 | 0.3 |
3.2.5 RMHD rotor problem
3.3 The Baer-Nunziato equations
\(\boldsymbol{\rho}_{\boldsymbol{s}}\)
|
\(\boldsymbol{u}_{\boldsymbol{s}}\)
|
\(\boldsymbol{p}_{\boldsymbol{s}}\)
|
\(\boldsymbol{\rho}_{\boldsymbol{g}}\)
|
\(\boldsymbol{u}_{\boldsymbol{g}}\)
|
\(\boldsymbol{p}_{\boldsymbol{g}}\)
|
\(\boldsymbol{\phi}_{\boldsymbol{s}}\)
|
\(\boldsymbol{t}_{\boldsymbol{e}}\)
| |
---|---|---|---|---|---|---|---|---|
BNRP1 (Deledicque and Papalexandris 2007): \(\gamma_{s} = 1.4\), \(\pi_{s} = 0\), \(\gamma _{g} = 1.4\), \(\pi_{g} = 0\)
| ||||||||
L | 1.0 | 0.0 | 1.0 | 0.5 | 0.0 | 1.0 | 0.4 | 0.10 |
R | 2.0 | 0.0 | 2.0 | 1.5 | 0.0 | 2.0 | 0.8 | |
BNRP2 (Deledicque and Papalexandris 2007): \(\gamma_{s} = 3.0\), \(\pi_{s} = 100\), \(\gamma_{g} = 1.4\), \(\pi_{g} = 0\)
| ||||||||
L | 800.0 | 0.0 | 500.0 | 1.5 | 0.0 | 2.0 | 0.4 | 0.10 |
R | 1,000.0 | 0.0 | 600.0 | 1.0 | 0.0 | 1.0 | 0.3 | |
BNRP3 (Deledicque and Papalexandris 2007): \(\gamma_{s} = 1.4\), \(\pi_{s} = 0\), \(\gamma _{g} = 1.4\), \(\pi_{g} = 0\)
| ||||||||
L | 1.0 | 0.9 | 2.5 | 1.0 | 0.0 | 1.0 | 0.9 | 0.10 |
R | 1.0 | 0.0 | 1.0 | 1.2 | 1.0 | 2.0 | 0.2 | |
BNRP5 (Schwendeman et al. 2006): \(\gamma_{s} = 1.4\), \(\pi_{s} = 0\), \(\gamma _{g} = 1.4\), \(\pi_{g} = 0\)
| ||||||||
L | 1.0 | 0.0 | 1.0 | 0.2 | 0.0 | 0.3 | 0.8 | 0.20 |
R | 1.0 | 0.0 | 1.0 | 1.0 | 0.0 | 1.0 | 0.3 | |
BNRP6 (Andrianov and Warnecke 2004): \(\gamma_{s} = 1.4\), \(\pi_{s} = 0\), \(\gamma _{g} = 1.4\), \(\pi_{g} = 0\)
| ||||||||
L | 0.2068 | 1.4166 | 0.0416 | 0.5806 | 1.5833 | 1.375 | 0.1 | 0.10 |
R | 2.2263 | 0.9366 | 6.0 | 0.4890 | −0.70138 | 0.986 | 0.2 |