Skip to main content

2020 | OriginalPaper | Buchkapitel

Efficient Dispersion on an Anonymous Ring in the Presence of Weak Byzantine Robots

verfasst von : Anisur Rahaman Molla, Kaushik Mondal, William K. Moses Jr.

Erschienen in: Algorithms for Sensor Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The problem of dispersion of mobile robots on a graph asks that n robots initially placed arbitrarily on the nodes of an n-node anonymous graph, autonomously move to reach a final configuration where exactly each node has at most one robot on it. This problem has been relatively well-studied when robots are non-faulty. In this paper, we introduce the notion of Byzantine faults to this problem, i.e., we formalize the problem of dispersion in the presence of up to f Byzantine robots. We then study the problem on a ring while simultaneously optimizing the time complexity of algorithms and the memory requirement per robot. Specifically, we design deterministic algorithms that attempt to match the time lower bound (\(\varOmega (n)\) rounds) and memory lower bound (\(\varOmega (\log n)\) bits per robot).
Our main result is a deterministic algorithm that is both time and memory optimal, i.e., O(n) rounds and \(O(\log n)\) bits of memory required per robot, subject to certain constraints. We subsequently provide results that require less assumptions but are either only time or memory optimal but not both. We also provide a primitive that takes robots initially gathered at a node of the ring and disperses them in a time and memory optimal manner without additional assumptions required .

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
There are mainly two types of faults–one is “crash fault” which means that once a robot crashes, it is dead and will not be active again thereafter; another one is “Byzantine fault” which means that a robot is alive throughout and may behave maliciously. Note that the Byzantine fault subsumes the crash fault.
 
2
In the algorithms, we mention a robot resets its sense of direction, i.e., it resets its notion of clockwise and counter-clockwise. That refers to the robot performing this check again and redefining clockwise and counter-clockwise accordingly.
 
3
Note that it is not necessary for a robot to know the value of n in order to maintain a counter using \(\log n\) bits of memory given that the robot’s total memory is \(c \log n\) bits of memory, where c is a sufficiently large constant.
 
4
Notice that we say that other co-located robots are to follow \(R_1\), instead of just staying put. This is to ensure that all robots initially co-located with \(R_1\) continue to stay with \(R_1\), even if \(R_1\) is a Byzantine robot and moves around during the \(n+1\) rounds.
 
5
Possibly some Byzantine robots may also be gathered as well, but the presence of these robots does not cause problems as the subsequent procedure, Rooted-Ring-Dispersion is correct even in the presence of \(n-1\) Byzantine robots.
 
6
This could happen at the beginning of the stage, if the two robots are co-located on the same node.
 
7
If r terminates prior to the end of round n, it becomes invisible to other robots. Thus, there is the risk of another non-Byzantine robot settling at the same node as r if r terminates early.
 
Literatur
1.
Zurück zum Zitat Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)CrossRef Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)CrossRef
2.
Zurück zum Zitat Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibility results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 178–190. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03089-0_13CrossRef Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibility results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 178–190. Springer, Cham (2013). https://​doi.​org/​10.​1007/​978-3-319-03089-0_​13CrossRef
3.
Zurück zum Zitat Augustine, J., Moses, Jr., W.K.: Dispersion of mobile robots: a study of memory-time trade-offs. CoRR abs/1707.05629 ([v4] 2018 (a preliminary version appeared in ICDCN’18)) Augustine, J., Moses, Jr., W.K.: Dispersion of mobile robots: a study of memory-time trade-offs. CoRR abs/1707.05629 ([v4] 2018 (a preliminary version appeared in ICDCN’18))
4.
Zurück zum Zitat Bampas, E., Gasieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour lock-in problem in the rotor-router model: I choose pointers and you choose port numbers. In: DISC, pp. 423–435 (2009) Bampas, E., Gasieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour lock-in problem in the rotor-router model: I choose pointers and you choose port numbers. In: DISC, pp. 423–435 (2009)
5.
Zurück zum Zitat Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of autonomous mobile robots in a grid. In: IPDPS, pp. 1–8 (2009) Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of autonomous mobile robots in a grid. In: IPDPS, pp. 1–8 (2009)
7.
Zurück zum Zitat Bouchard, S., Dieudonné, Y., Lamani, A.: Byzantine gathering in polynomial time. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, Prague, Czech Republic, 9–13 July 2018, pp. 147:1–147:15 (2018) Bouchard, S., Dieudonné, Y., Lamani, A.: Byzantine gathering in polynomial time. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, Prague, Czech Republic, 9–13 July 2018, pp. 147:1–147:15 (2018)
9.
Zurück zum Zitat Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetCrossRef Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetCrossRef
10.
Zurück zum Zitat Cieliebak, M., Prencipe, G.: Gathering autonomous mobile robots. In: Proceedings of the 9th International Colloquium on Structural Information and Communication Complexity (SIROCCO), pp. 57–72 (2002) Cieliebak, M., Prencipe, G.: Gathering autonomous mobile robots. In: Proceedings of the 9th International Colloquium on Structural Information and Communication Complexity (SIROCCO), pp. 57–72 (2002)
11.
Zurück zum Zitat Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Trans. Algorithms 4(4), 42:1–42:18 (2008) Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Trans. Algorithms 4(4), 42:1–42:18 (2008)
12.
Zurück zum Zitat Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In: Proceedings of the 11th International Colloquium on Structural Information and Communication Complexity, (SIROCCO), pp. 79–88 (2004) Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In: Proceedings of the 11th International Colloquium on Structural Information and Communication Complexity, (SIROCCO), pp. 79–88 (2004)
13.
Zurück zum Zitat Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J. Parallel Distrib. Comput. 7(2), 279–301 (1989)CrossRef Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J. Parallel Distrib. Comput. 7(2), 279–301 (1989)CrossRef
15.
Zurück zum Zitat Das, S.: Mobile agents in distributed computing: network exploration. Bull. EATCS 109, 54–69 (2013)MATH Das, S.: Mobile agents in distributed computing: network exploration. Bull. EATCS 109, 54–69 (2013)MATH
16.
Zurück zum Zitat Das, S., Focardi, R., Luccio, F.L., Markou, E., Squarcina, M.: Gathering of robots in a ring with mobile faults. Theor. Comput. Sci. 764, 42–60 (2019)MathSciNetCrossRef Das, S., Focardi, R., Luccio, F.L., Markou, E., Squarcina, M.: Gathering of robots in a ring with mobile faults. Theor. Comput. Sci. 764, 42–60 (2019)MathSciNetCrossRef
18.
Zurück zum Zitat Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 139–148 (2011) Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 139–148 (2011)
19.
Zurück zum Zitat Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015) Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)
20.
Zurück zum Zitat Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11(1), 1:1–1:28 (2014) Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11(1), 1:1–1:28 (2014)
21.
Zurück zum Zitat Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theor. Comput. Sci. 412(8–10), 783–795 (2011)MathSciNetCrossRef Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theor. Comput. Sci. 412(8–10), 783–795 (2011)MathSciNetCrossRef
22.
Zurück zum Zitat Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)MathSciNetCrossRef Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)MathSciNetCrossRef
23.
Zurück zum Zitat Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. In: ICDCN, pp. 218–227 (2019) Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. In: ICDCN, pp. 218–227 (2019)
24.
Zurück zum Zitat Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Fast dispersion of mobile robots on arbitrary graphs. In: ALGOSENSORS (2019) Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Fast dispersion of mobile robots on arbitrary graphs. In: ALGOSENSORS (2019)
25.
Zurück zum Zitat Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots in the global communication model. In: ICDCN (2020) Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots in the global communication model. In: ICDCN (2020)
26.
Zurück zum Zitat Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots on grids. In: WALCOM (2020) Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots on grids. In: WALCOM (2020)
27.
Zurück zum Zitat Menc, A., Pajak, D., Uznanski, P.: Time and space optimality of rotor-router graph exploration. Inf. Process. Lett. 127, 17–20 (2017)MathSciNetCrossRef Menc, A., Pajak, D., Uznanski, P.: Time and space optimality of rotor-router graph exploration. Inf. Process. Lett. 127, 17–20 (2017)MathSciNetCrossRef
28.
Zurück zum Zitat Miller, A., Pelc, A.: Tradeoffs between cost and information for rendezvous and treasure hunt. J. Parallel Distrib. Comput. 83, 159–167 (2015)CrossRef Miller, A., Pelc, A.: Tradeoffs between cost and information for rendezvous and treasure hunt. J. Parallel Distrib. Comput. 83, 159–167 (2015)CrossRef
29.
Zurück zum Zitat Molla, A.R., Moses Jr., W.K.: Dispersion of mobile robots: the power of randomness. In: TAMC, pp. 481–500 (2019) Molla, A.R., Moses Jr., W.K.: Dispersion of mobile robots: the power of randomness. In: TAMC, pp. 481–500 (2019)
30.
Zurück zum Zitat Potop-Butucaru, M., Raynal, M., Tixeuil, S.: Distributed computing with mobile robots: an introductory survey. In: The 14th International Conference on Network-Based Information Systems (NBiS), pp. 318–324 (2011) Potop-Butucaru, M., Raynal, M., Tixeuil, S.: Distributed computing with mobile robots: an introductory survey. In: The 14th International Conference on Network-Based Information Systems (NBiS), pp. 318–324 (2011)
31.
Zurück zum Zitat Poudel, P., Sharma, G.: Time-optimal uniform scattering in a grid. In: ICDCN, pp. 228–237 (2019) Poudel, P., Sharma, G.: Time-optimal uniform scattering in a grid. In: ICDCN, pp. 228–237 (2019)
32.
Zurück zum Zitat Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)MathSciNetCrossRef Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)MathSciNetCrossRef
33.
Zurück zum Zitat Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uniform deployment of mobile agents in asynchronous rings. In: PODC, pp. 415–424 (2016) Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uniform deployment of mobile agents in asynchronous rings. In: PODC, pp. 415–424 (2016)
34.
Zurück zum Zitat Subramanian, R., Scherson, I.D.: An analysis of diffusive load-balancing. In: SPAA, pp. 220–225 (1994) Subramanian, R., Scherson, I.D.: An analysis of diffusive load-balancing. In: SPAA, pp. 220–225 (1994)
35.
Zurück zum Zitat Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetCrossRef Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetCrossRef
Metadaten
Titel
Efficient Dispersion on an Anonymous Ring in the Presence of Weak Byzantine Robots
verfasst von
Anisur Rahaman Molla
Kaushik Mondal
William K. Moses Jr.
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-62401-9_11