Skip to main content
Erschienen in: Numerical Algorithms 4/2020

28.05.2019 | Original Paper

Efficient high-order compact exponential time differencing method for space-fractional reaction-diffusion systems with nonhomogeneous boundary conditions

verfasst von: H. P. Bhatt, A. Q. M. Khaliq, K. M. Furati

Erschienen in: Numerical Algorithms | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper introduces an efficient unconditionally stable fourth-order method for solving nonlinear space-fractional reaction-diffusion systems with nonhomogeneous Dirichlet boundary conditions on bounded domains. The proposed method is based on a compact improved matrix transformed technique for fourth-order spatial approximation and exponential time differencing approximation for fourth-order time integration. The main advantage of the improved matrix transfer technique is that it leads to a system of ordinary differential equations with spatial discretization matrix raised to the desired fractional order. The key benefit of the fourth-order exponential integrator is that it can be implemented with essentially the same computational complexity as the backward Euler method by utilizing a partial fraction splitting technique in which it is just required to solve two backward Euler-type well-conditioned linear systems at each time step by computing LU decomposition of spatial discretization matrix once outside the time loop. Linear stability analysis and various numerical experiments are also performed to demonstrate stability and accuracy of the proposed method. Moreover, calculation of local truncation error and an empirical convergence analysis show the fourth-order accuracy of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MathSciNetMATH Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MathSciNetMATH
2.
Zurück zum Zitat Liu, F., Anh, V., Turner, I., Zhuang, P.: Time fractional advection-dispersion equation. J. Appl. Math. Comput. 13, 233–246 (2003)MathSciNetMATH Liu, F., Anh, V., Turner, I., Zhuang, P.: Time fractional advection-dispersion equation. J. Appl. Math. Comput. 13, 233–246 (2003)MathSciNetMATH
3.
Zurück zum Zitat Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resor. Res. 36, 1403–1412 (2000) Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resor. Res. 36, 1403–1412 (2000)
4.
Zurück zum Zitat Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)MathSciNetMATH Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)MathSciNetMATH
5.
Zurück zum Zitat Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E 61, 132–138 (2000)MathSciNet Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E 61, 132–138 (2000)MathSciNet
6.
Zurück zum Zitat Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A: Stat. Mech. Appl. 284, 376–384 (2000)MathSciNet Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A: Stat. Mech. Appl. 284, 376–384 (2000)MathSciNet
7.
8.
Zurück zum Zitat Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an A + BC reaction-subdiffusion process. Phys. Rev. E 69, 036126 (2004) Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an A + BC reaction-subdiffusion process. Phys. Rev. E 69, 036126 (2004)
9.
Zurück zum Zitat Yuste, S.B., Lindenberg, K.: Subdiffusion-limited A + A reactions. Phys. Rev. Lett. 87, 118301 (2001) Yuste, S.B., Lindenberg, K.: Subdiffusion-limited A + A reactions. Phys. Rev. Lett. 87, 118301 (2001)
10.
Zurück zum Zitat Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)MathSciNetMATH Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)MathSciNetMATH
11.
Zurück zum Zitat Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetMATH Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetMATH
12.
Zurück zum Zitat Tadjeran, C., Meerschaert, M.M., Scheffler, H.-P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)MathSciNetMATH Tadjeran, C., Meerschaert, M.M., Scheffler, H.-P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)MathSciNetMATH
13.
Zurück zum Zitat Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)MathSciNetMATH Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)MathSciNetMATH
14.
Zurück zum Zitat Shen, S., Liu, F., Anh, V., Turner, I.: The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl Math. 73, 850–872 (2008)MathSciNetMATH Shen, S., Liu, F., Anh, V., Turner, I.: The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl Math. 73, 850–872 (2008)MathSciNetMATH
15.
Zurück zum Zitat Chen, S., Liu, F., Turner, I., Anh, V.: An implicit numerical method for the two dimensional fractional percolation equation. Appl. Math. Comput. 219, 4322–4331 (2013)MathSciNetMATH Chen, S., Liu, F., Turner, I., Anh, V.: An implicit numerical method for the two dimensional fractional percolation equation. Appl. Math. Comput. 219, 4322–4331 (2013)MathSciNetMATH
16.
Zurück zum Zitat Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 24, 200–218 (2010)MathSciNetMATH Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 24, 200–218 (2010)MathSciNetMATH
17.
Zurück zum Zitat Shen, S., Liu, F., Anh, V., Turner, I., Chen, J.: A novel numerical approximation for the space fractional advection-dispersion equation. IMA J. Appl. Math. 79, 1–14 (2012)MathSciNetMATH Shen, S., Liu, F., Anh, V., Turner, I., Chen, J.: A novel numerical approximation for the space fractional advection-dispersion equation. IMA J. Appl. Math. 79, 1–14 (2012)MathSciNetMATH
18.
Zurück zum Zitat Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the spacetime Riesz-caputo fractional advectiondi fusion equation. Numer. Algor. 56, 383–403 (2011)MATH Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the spacetime Riesz-caputo fractional advectiondi fusion equation. Numer. Algor. 56, 383–403 (2011)MATH
19.
Zurück zum Zitat Zhang, H., Liu, F.: Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term. J. Appl. Math. Inform. 26, 1–14 (2008) Zhang, H., Liu, F.: Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term. J. Appl. Math. Inform. 26, 1–14 (2008)
20.
Zurück zum Zitat Liu, F., Turner, I., Anh, V., Yang, Q., Burrage, K.: A numerical method for the fractional Fitzhugh-Nagumo monodomain model. ANZIAM J. 54, C608–C629 (2013)MathSciNetMATH Liu, F., Turner, I., Anh, V., Yang, Q., Burrage, K.: A numerical method for the fractional Fitzhugh-Nagumo monodomain model. ANZIAM J. 54, C608–C629 (2013)MathSciNetMATH
21.
Zurück zum Zitat Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D. Cent. Eur. J. Phys. 11, 646–665 (2013) Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D. Cent. Eur. J. Phys. 11, 646–665 (2013)
22.
Zurück zum Zitat Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)MathSciNetMATH Celik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)MathSciNetMATH
23.
Zurück zum Zitat Liang, X., Khaliq, A.Q.M., Bhatt, H.P.: The locally extrapolated exponential splitting scheme for multi-dimensional nonlinear space-fractional Schrödinger equations. Numer. Algor. 76, 939–958 (2017)MATH Liang, X., Khaliq, A.Q.M., Bhatt, H.P.: The locally extrapolated exponential splitting scheme for multi-dimensional nonlinear space-fractional Schrödinger equations. Numer. Algor. 76, 939–958 (2017)MATH
24.
Zurück zum Zitat Ortigueira, M.D.: Riesz potential operators and inveres via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 1–12 (2006). Article ID 48391 Ortigueira, M.D.: Riesz potential operators and inveres via fractional centred derivatives. Int. J. Math. Math. Sci. 2006, 1–12 (2006). Article ID 48391
25.
Zurück zum Zitat Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)MathSciNetMATH Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)MathSciNetMATH
26.
Zurück zum Zitat Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation (II)-with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9, 333–349 (2006)MathSciNetMATH Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation (II)-with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9, 333–349 (2006)MathSciNetMATH
27.
Zurück zum Zitat Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation I. Fract. Calc. Appl. Anal. 8, 323–341 (2005)MathSciNetMATH Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation I. Fract. Calc. Appl. Anal. 8, 323–341 (2005)MathSciNetMATH
28.
Zurück zum Zitat fei Ding, H., xin Zhang, Y.: New numerical methods for the Riesz space fractional partial differential equations. Comput. Math. Appl. 63(7), 1135–1146 (2012)MathSciNetMATH fei Ding, H., xin Zhang, Y.: New numerical methods for the Riesz space fractional partial differential equations. Comput. Math. Appl. 63(7), 1135–1146 (2012)MathSciNetMATH
29.
Zurück zum Zitat Yang, Q., Turner, I., Liu, F., Ilić, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33(3), 1159–1180 (2011)MathSciNetMATH Yang, Q., Turner, I., Liu, F., Ilić, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33(3), 1159–1180 (2011)MathSciNetMATH
30.
Zurück zum Zitat Aceto, L., Novati, P.: Rational approximation to the fractional Laplacian operator in reaction-diffusion problems. SIAM J. Sci. Comput. 39(1), A214–A228 (2017)MathSciNetMATH Aceto, L., Novati, P.: Rational approximation to the fractional Laplacian operator in reaction-diffusion problems. SIAM J. Sci. Comput. 39(1), A214–A228 (2017)MathSciNetMATH
31.
Zurück zum Zitat Zhao, X., Sun, Z., Hao, Z.: A fourth-order compact ADI scheme for two-dimensional nonlinear space-fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)MATH Zhao, X., Sun, Z., Hao, Z.: A fourth-order compact ADI scheme for two-dimensional nonlinear space-fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)MATH
32.
Zurück zum Zitat Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Nuer. Anal. 52, 2599–2622 (2014)MathSciNetMATH Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Nuer. Anal. 52, 2599–2622 (2014)MathSciNetMATH
33.
Zurück zum Zitat Li, C., Chen, A.: Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 95(6-7), 1048–1099 (2018)MathSciNet Li, C., Chen, A.: Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 95(6-7), 1048–1099 (2018)MathSciNet
34.
Zurück zum Zitat Farquhar, M.E., Moroney, T.J., Yang, Q., Turner, I.W.: GPU accelerated algorithms for computing matrix function vector products with applications to exponential integrators and fractional diffusion, SIAM J. Sci. Comput. 38(3), C127–C149 Farquhar, M.E., Moroney, T.J., Yang, Q., Turner, I.W.: GPU accelerated algorithms for computing matrix function vector products with applications to exponential integrators and fractional diffusion, SIAM J. Sci. Comput. 38(3), C127–C149
35.
Zurück zum Zitat Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007)MathSciNetMATH Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007)MathSciNetMATH
36.
Zurück zum Zitat Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdifusion equation with a nonlinear source term. J. Comput. Appl Math. 231, 160–176 (2009)MathSciNetMATH Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdifusion equation with a nonlinear source term. J. Comput. Appl Math. 231, 160–176 (2009)MathSciNetMATH
37.
Zurück zum Zitat Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014)MathSciNetMATH Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014)MathSciNetMATH
38.
Zurück zum Zitat Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)MathSciNetMATH Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)MathSciNetMATH
39.
Zurück zum Zitat Samko, S.G., Kilbas, A.M., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993). Translation from the Russian)MATH Samko, S.G., Kilbas, A.M., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993). Translation from the Russian)MATH
40.
41.
Zurück zum Zitat Cusimano, N., del Teso, F., Gerardo-Giorda, L., Pagnini, G.: Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions. SIAM J. Numer. Anal 56, 1243–1272 (2018)MathSciNetMATH Cusimano, N., del Teso, F., Gerardo-Giorda, L., Pagnini, G.: Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions. SIAM J. Numer. Anal 56, 1243–1272 (2018)MathSciNetMATH
42.
Zurück zum Zitat Krogstad, S.: Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203, 72–88 (2005)MathSciNetMATH Krogstad, S.: Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203, 72–88 (2005)MathSciNetMATH
43.
Zurück zum Zitat Bhatt, H.P., Khaliq, A.Q.M.: Fourth-order compact schemes for the numerical simulation of coupled burgers’ equation. Comput. Phys. Commun. 200, 117–138 (2016)MathSciNetMATH Bhatt, H.P., Khaliq, A.Q.M.: Fourth-order compact schemes for the numerical simulation of coupled burgers’ equation. Comput. Phys. Commun. 200, 117–138 (2016)MathSciNetMATH
44.
Zurück zum Zitat Kassam, A.K., Trefethen, L.N.: Fourth-order time stepping for stiff PDEs. SIAM J. Sci. Comput. 26(4), 1214–1233 (2005)MathSciNetMATH Kassam, A.K., Trefethen, L.N.: Fourth-order time stepping for stiff PDEs. SIAM J. Sci. Comput. 26(4), 1214–1233 (2005)MathSciNetMATH
45.
Zurück zum Zitat Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comp. Phys. 176, 430–455 (2002)MathSciNetMATH Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comp. Phys. 176, 430–455 (2002)MathSciNetMATH
46.
Zurück zum Zitat Khaliq, A.Q.M., Vaquero, J.M., Wade, B.A., Yousuf, M.: Smoothing schemes for reaction-diffusion systems with nonsmooth data. J. Comput. Appl. Math. 223, 374–386 (2009)MathSciNetMATH Khaliq, A.Q.M., Vaquero, J.M., Wade, B.A., Yousuf, M.: Smoothing schemes for reaction-diffusion systems with nonsmooth data. J. Comput. Appl. Math. 223, 374–386 (2009)MathSciNetMATH
47.
Zurück zum Zitat Zhao, S., Ovadia, J., Liu, X., Zhang, Y.-T., Nie, Q.: Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems. J. Comput. Phys. 230, 5996–6009 (2011)MathSciNetMATH Zhao, S., Ovadia, J., Liu, X., Zhang, Y.-T., Nie, Q.: Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems. J. Comput. Phys. 230, 5996–6009 (2011)MathSciNetMATH
48.
Zurück zum Zitat Norsett, S.P., Wolfbrandt, A.: Attainable order of rational approximations to the exponential function with only real poles. BIT 17, 200–208 (1977)MathSciNetMATH Norsett, S.P., Wolfbrandt, A.: Attainable order of rational approximations to the exponential function with only real poles. BIT 17, 200–208 (1977)MathSciNetMATH
49.
Zurück zum Zitat Ding, H.F., Zhang, Y.X.: A new finite difference schemes for a one-space-dimensional linear hyperbolic equation. Appl. Math. Comput. 187, 1272–1276 (2007)MathSciNet Ding, H.F., Zhang, Y.X.: A new finite difference schemes for a one-space-dimensional linear hyperbolic equation. Appl. Math. Comput. 187, 1272–1276 (2007)MathSciNet
50.
Zurück zum Zitat Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equation, BIT Numer. Math. 54 (2014) Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equation, BIT Numer. Math. 54 (2014)
51.
Zurück zum Zitat Twizell, E.H., Gumel, A.B., Cao, Q.: A second-order scheme for the “Brusselator” reaction-diffusion system. J. Math. Chem. 26, 297–316 (1999)MathSciNetMATH Twizell, E.H., Gumel, A.B., Cao, Q.: A second-order scheme for the “Brusselator” reaction-diffusion system. J. Math. Chem. 26, 297–316 (1999)MathSciNetMATH
52.
Zurück zum Zitat Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system a + b3b, bc. Chem. Eng. Sci. 39, 1087–1097 (1984) Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system a + b3b, bc. Chem. Eng. Sci. 39, 1087–1097 (1984)
53.
Zurück zum Zitat Doelman, A., Kaper, T.J., Zegeling, P.A.: Pattern formation in the one-dimensional Gray-Scott model. Nonlinearity 10, 523–563 (1997)MathSciNetMATH Doelman, A., Kaper, T.J., Zegeling, P.A.: Pattern formation in the one-dimensional Gray-Scott model. Nonlinearity 10, 523–563 (1997)MathSciNetMATH
54.
Zurück zum Zitat Pearson, J.E.: Complex patterns in a simple system. Science 261, 189–192 (1993) Pearson, J.E.: Complex patterns in a simple system. Science 261, 189–192 (1993)
55.
Zurück zum Zitat Zegeling, P.A., Kok, H.P.: Adaptive moving mesh computations for reaction-diffusion systems. J. Comput. Appl. Maths. 168, 519–528 (2004)MathSciNetMATH Zegeling, P.A., Kok, H.P.: Adaptive moving mesh computations for reaction-diffusion systems. J. Comput. Appl. Maths. 168, 519–528 (2004)MathSciNetMATH
Metadaten
Titel
Efficient high-order compact exponential time differencing method for space-fractional reaction-diffusion systems with nonhomogeneous boundary conditions
verfasst von
H. P. Bhatt
A. Q. M. Khaliq
K. M. Furati
Publikationsdatum
28.05.2019
Verlag
Springer US
Erschienen in
Numerical Algorithms / Ausgabe 4/2020
Print ISSN: 1017-1398
Elektronische ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-019-00729-3

Weitere Artikel der Ausgabe 4/2020

Numerical Algorithms 4/2020 Zur Ausgabe