Skip to main content

2025 | OriginalPaper | Buchkapitel

Efficient Implementation of Polar Decoder: Design and Performance Analysis

verfasst von : Swapnil P. Badar, Kamlesh Khanchandani

Erschienen in: Proceedings of Third International Conference on Computational Electronics for Wireless Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we introduce and evaluate two novel methodologies for the efficient implementation of polar decoders. Polar decoders are integral components within contemporary 5G communication systems, specifically for error correction in control channels. Although polar codes offer significant advantages, their implementation often poses computational challenges, potentially impacting latency and throughput. To overcome these challenges, we present two innovative decoder designs: a component code-based approach and a specialized node-based design that identifies distinct bit patterns to mitigate decoding complexity. The 16-bit polar decoder, realized through our proposed designs, is synthesized and precisely simulated using Cadence Suite with TSMC 65nm CMOS process. Our findings highlight remarkable enhancements in latency, area, throughput, and power efficiency, rendering them highly suitable for cutting-edge communication systems. Notably, the specialized node-based decoder emerges as the top performer, exhibiting a minimal latency of 0.989 ns and an impressive throughput of 16.17 Gbps, all while occupying a compact area of 787.68 um2 and consuming a power of  0.024 mW. The component code-based decoder also excels with a latency of 1.192 ns, a throughput of 13.42 Gbps, an area footprint of 1292.4 um2, and a power consumption of 0.109 mW. These outcomes underscore the viability of our approaches for efficient polar decoding in advanced communication systems. Furthermore, these methodologies hold the potential to be scaled for higher order polar decoders, offering promising avenues for future research and application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-correcting coding and decoding: turbo-codes. ICC, Geneva, Switzerland, pp 1064–1070 Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-correcting coding and decoding: turbo-codes. ICC, Geneva, Switzerland, pp 1064–1070
2.
Zurück zum Zitat Gallager RG (1963) Low density parity-check codes. Cambridge Gallager RG (1963) Low density parity-check codes. Cambridge
3.
Zurück zum Zitat Arıkan E (2009) Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans Inf Theor 55(7):3051–3071 Arıkan E (2009) Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans Inf Theor 55(7):3051–3071
4.
Zurück zum Zitat Samsung, Qualcomm Incorporated, Nokia, ASB, KT Corporation, Intel Corporation, Lisbon, Portugal, Technical Specification (TS): 3GPP RAN WG1 Meeting 86bis, R1-1610690, Way Forward on Observations for eMBB Data Channel Coding Samsung, Qualcomm Incorporated, Nokia, ASB, KT Corporation, Intel Corporation, Lisbon, Portugal, Technical Specification (TS): 3GPP RAN WG1 Meeting 86bis, R1-1610690, Way Forward on Observations for eMBB Data Channel Coding
5.
Zurück zum Zitat T. S. (TS) ZTE Microelectronics, Reno, USA: 3GPP TSG RAN WG1 87, R1-1611109, Evaluation on Channel coding Candidates for eMBB Control Channel T. S. (TS) ZTE Microelectronics, Reno, USA: 3GPP TSG RAN WG1 87, R1-1611109, Evaluation on Channel coding Candidates for eMBB Control Channel
6.
Zurück zum Zitat Sarkis G, Giard P, Vardy A, Thibeault C, Gross WJ (2014) Fast polar decoders: algorithm and implementation. IEEE J Sel Areas Commun 32(5):946–957 Sarkis G, Giard P, Vardy A, Thibeault C, Gross WJ (2014) Fast polar decoders: algorithm and implementation. IEEE J Sel Areas Commun 32(5):946–957
7.
Zurück zum Zitat Hanif M, Ardakani M (2017) Fast successive-cancellation decoding of polar codes: identification and decoding of new nodes. IEEE Commun Lett 21(11):2360–2363 Hanif M, Ardakani M (2017) Fast successive-cancellation decoding of polar codes: identification and decoding of new nodes. IEEE Commun Lett 21(11):2360–2363
8.
Zurück zum Zitat Maunder RG (2016) A vision for 5G channel coding. Accelercomm White Pap, no. September, pp 1–14 Maunder RG (2016) A vision for 5G channel coding. Accelercomm White Pap, no. September, pp 1–14
9.
Zurück zum Zitat Tal I, Vardy A (2013) How to construct polar codes. IEEE Trans Inf Theor 59(10):6562–6582 Tal I, Vardy A (2013) How to construct polar codes. IEEE Trans Inf Theor 59(10):6562–6582
10.
Zurück zum Zitat Tal I, Vardy A (2015) List decoding of polar codes. IEEE Trans Inf Theor 61(5):2213–2226 Tal I, Vardy A (2015) List decoding of polar codes. IEEE Trans Inf Theor 61(5):2213–2226
11.
Zurück zum Zitat Zhou Y, Lin J, Wang Z (2019) Improved fast-SSC-flip decoding of polar codes. IEEE Commun Lett 23(6):950–953 Zhou Y, Lin J, Wang Z (2019) Improved fast-SSC-flip decoding of polar codes. IEEE Commun Lett 23(6):950–953
12.
Zurück zum Zitat Badar SP, Khanchandani K, Wankhede P (2023) Fast polar decoder implementation using special nodes. In: 2nd international conference paradigm shifts communications embedded systems, machine learning and signal processing, PCEMS 2023, no 1 Badar SP, Khanchandani K, Wankhede P (2023) Fast polar decoder implementation using special nodes. In: 2nd international conference paradigm shifts communications embedded systems, machine learning and signal processing, PCEMS 2023, no 1
13.
Zurück zum Zitat Maunder RG (2018) The implementation challenges of polar codes, pp 1–18 Maunder RG (2018) The implementation challenges of polar codes, pp 1–18
14.
Zurück zum Zitat Badar SP, Khanchandani K (2022) Successive cancellation polar decoder implementation using processing elements. In: IEEE region 10 symposium, TENSYMP 2022, no 1, pp 0–5 Badar SP, Khanchandani K (2022) Successive cancellation polar decoder implementation using processing elements. In: IEEE region 10 symposium, TENSYMP 2022, no 1, pp 0–5
15.
Zurück zum Zitat Hashemi SA, Condo C, Mondelli M, Gross WJ (2019) Rate-flexible fast polar decoders. IEEE Trans Signal Process 67(22):5689–5701 Hashemi SA, Condo C, Mondelli M, Gross WJ (2019) Rate-flexible fast polar decoders. IEEE Trans Signal Process 67(22):5689–5701
16.
Zurück zum Zitat Kam D, Lee Y (2019) Ultra-low-latency parallel SC polar decoding architecture for 5G wireless communications. In: Proceedings of IEEE international symposium circuits systems, vol 1 Kam D, Lee Y (2019) Ultra-low-latency parallel SC polar decoding architecture for 5G wireless communications. In: Proceedings of IEEE international symposium circuits systems, vol 1
17.
Zurück zum Zitat Xiong C, Lin J, Yan Z (2016) A multimode area-efficient SCL polar decoder. IEEE Trans Very Large Scale Integr Syst 24(12):3499–3512 Xiong C, Lin J, Yan Z (2016) A multimode area-efficient SCL polar decoder. IEEE Trans Very Large Scale Integr Syst 24(12):3499–3512
18.
Zurück zum Zitat Leroux C, Raymond AJ, Sarkis G, Gross WJ (2013) A Semi-parallel successive-cancellation decoder for polar codes. IEEE Trans Signal Process 61(2):289–299 Leroux C, Raymond AJ, Sarkis G, Gross WJ (2013) A Semi-parallel successive-cancellation decoder for polar codes. IEEE Trans Signal Process 61(2):289–299
19.
Zurück zum Zitat Ercan F, Tonnellier T, Gross WJ (2020) Energy-efficient hardware architectures for fast polar decoders. IEEE Trans Circuits Syst I Regul Pap 67(1):322–335 Ercan F, Tonnellier T, Gross WJ (2020) Energy-efficient hardware architectures for fast polar decoders. IEEE Trans Circuits Syst I Regul Pap 67(1):322–335
20.
Zurück zum Zitat Giard P, Balatsoukas-Stimming A, Sarkis G, Thibeault C, Gross WJ (2018) Fast low-complexity decoders for low-rate polar codes. J Signal Process Syst 90(5):675–685 Giard P, Balatsoukas-Stimming A, Sarkis G, Thibeault C, Gross WJ (2018) Fast low-complexity decoders for low-rate polar codes. J Signal Process Syst 90(5):675–685
Metadaten
Titel
Efficient Implementation of Polar Decoder: Design and Performance Analysis
verfasst von
Swapnil P. Badar
Kamlesh Khanchandani
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1943-3_12