Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.01.2015 | Ausgabe 1/2015

International Journal of Computer Vision 1/2015

Efficient Learning of Linear Predictors for Template Tracking

Zeitschrift:
International Journal of Computer Vision > Ausgabe 1/2015
Autoren:
Stefan Holzer, Slobodan Ilic, David Tan, Marc Pollefeys, Nassir Navab
Wichtige Hinweise
Communicated by Cordelia Schmid.

Abstract

The research on tracking templates or image patches in a sequence of images has been largely dominated by energy-minimization-based methods. However, since its introduction in Jurie and Dhome (IEEE Trans Pattern Anal Mach Intell, 2002), the learning-based approach called linear predictors has proven to be an efficient and reliable alternative for template tracking, demonstrating superior tracking speed and robustness. But, their time intensive learning procedure prevented their use in applications where online learning is essential. Indeed, Holzer et al. (Adaptive linear predictors for real-time tracking, 2010) presented an iterative method to learn linear predictors; but it starts with a small template that makes it unstable at the beginning. Therefore, we propose three methods for highly efficient learning of full-sized linear predictors—where the first one is based on dimensionality reduction using the discrete cosine transform; the second is based on an efficient reformulation of the learning equations; and, the third is a combination of both. They show different characteristics with respect to learning time and tracking robustness, which makes them suitable for different scenarios.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2015

International Journal of Computer Vision 1/2015 Zur Ausgabe

Premium Partner

    Bildnachweise