Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Computational Mechanics 6/2015

01.06.2015 | Original Paper

Efficient numerical simulation of aeroacoustics for low Mach number flows interacting with structures

verfasst von: Michael Kornhaas, Michael Schäfer, Dörte C. Sternel

Erschienen in: Computational Mechanics | Ausgabe 6/2015

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

An integrated hybrid approach for the numerical simulation of aeroacoustics at low Mach numbers is presented. The method is based on a viscous/acoustic splitting. The turbulent incompressible background flow is computed with large eddy simulation, based on the incompressible Navier-Stokes equations, whereas the acoustics are computed from linearized Euler equations with a high-resolution scheme. The focus is on the numerical efficiency of the approach. To accelerate the computations, hierarchical grids and a frozen fluid approach for the acoustics are employed and investigated. For validation and the investigation of the numerical efficiency and accuracy the sound emission of a plate in the turbulent wake of a circular cylinder is employed as a test case.
Literatur
1.
Zurück zum Zitat FASTEST-Manual (2005) Fachgebiet für Numerische Berechnungsverfahren im Maschinenbau, Technische Universität Darmstadt FASTEST-Manual (2005) Fachgebiet für Numerische Berechnungsverfahren im Maschinenbau, Technische Universität Darmstadt
2.
Zurück zum Zitat Ali I, Becker S, Utzmann J, Munz CD (2008) Aeroacoustic study of a forward facing step using linearized Euler equations. Physica D 237:2184–2189 MATHCrossRef Ali I, Becker S, Utzmann J, Munz CD (2008) Aeroacoustic study of a forward facing step using linearized Euler equations. Physica D 237:2184–2189 MATHCrossRef
3.
Zurück zum Zitat Ali I, Escobar M, Kaltenbacher M, Becker S (2008) Time domain computation of flow induced sound. Comput Fluids 37:349–359 MATHCrossRef Ali I, Escobar M, Kaltenbacher M, Becker S (2008) Time domain computation of flow induced sound. Comput Fluids 37:349–359 MATHCrossRef
4.
Zurück zum Zitat Bailly C, Juvé D (1999) A stochastic approach to compute subsonic noise unsing Linearized Euler Equations. AIAA Paper 99–1872 Bailly C, Juvé D (1999) A stochastic approach to compute subsonic noise unsing Linearized Euler Equations. AIAA Paper 99–1872
5.
Zurück zum Zitat Berland J, Lafon P, Crouzet F, Daude F, Bailly C (2010) Numerical Insight into Sound Sources of a Rod-Airfoil Flow Configuration Using Direct Noise Calculation. In: 16th AIAA/CEAS Aeroacoustics Conference Berland J, Lafon P, Crouzet F, Daude F, Bailly C (2010) Numerical Insight into Sound Sources of a Rod-Airfoil Flow Configuration Using Direct Noise Calculation. In: 16th AIAA/CEAS Aeroacoustics Conference
6.
Zurück zum Zitat Breuer M (1998) Large Eddy Simulations of the subcritical flow past a circular cylinder: numerical and modeling aspects. Int J Numer Methods Fluids 28:1281–1302 MATHCrossRef Breuer M (1998) Large Eddy Simulations of the subcritical flow past a circular cylinder: numerical and modeling aspects. Int J Numer Methods Fluids 28:1281–1302 MATHCrossRef
7.
Zurück zum Zitat Cabana M, Fortuné V, E L (2010) Direct computation of the sound radiated by shear layers using upwind compact schemes. In: Direct and large-eddy simulation VII, ERCOFTAC Series, vol 13, Springer Cabana M, Fortuné V, E L (2010) Direct computation of the sound radiated by shear layers using upwind compact schemes. In: Direct and large-eddy simulation VII, ERCOFTAC Series, vol 13, Springer
8.
Zurück zum Zitat Ewert R, Schröder W (2003) Acoustic perturbation equations based on flow decomposition via source filtering. J Comput Phys 188:365–398 MATHMathSciNetCrossRef Ewert R, Schröder W (2003) Acoustic perturbation equations based on flow decomposition via source filtering. J Comput Phys 188:365–398 MATHMathSciNetCrossRef
9.
Zurück zum Zitat Germano M, Piomelli U, Moin P, Cabot W (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765 MATHCrossRef Germano M, Piomelli U, Moin P, Cabot W (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765 MATHCrossRef
10.
Zurück zum Zitat Gloerfelt X, Lafon P (2008) Direct computation of the noise induced by a turbulent flow through a diaphragm in a duct at low Mach number. Comput Fluids 37:388–401 MATHCrossRef Gloerfelt X, Lafon P (2008) Direct computation of the noise induced by a turbulent flow through a diaphragm in a duct at low Mach number. Comput Fluids 37:388–401 MATHCrossRef
11.
Zurück zum Zitat Gloerfelt X, Bailly C, Juvé D (2003) Direct computation of the noise radiated bya subsonic cavity flow and application of integral methods. J Sound Vib 266:119–146 CrossRef Gloerfelt X, Bailly C, Juvé D (2003) Direct computation of the noise radiated bya subsonic cavity flow and application of integral methods. J Sound Vib 266:119–146 CrossRef
13.
Zurück zum Zitat Jakirlić S, Kadavelil G, Kornhaas M, Schäfer M, Sternel DC, Tropea C (2010) Numerical and physical aspects in LES and hybrid LES/RANS of turbulent flow separation in a 3-D diffuser. Int J Heat Fluid Flow 31:820–832 CrossRef Jakirlić S, Kadavelil G, Kornhaas M, Schäfer M, Sternel DC, Tropea C (2010) Numerical and physical aspects in LES and hybrid LES/RANS of turbulent flow separation in a 3-D diffuser. Int J Heat Fluid Flow 31:820–832 CrossRef
14.
Zurück zum Zitat Kornhaas M (2011) Effiziente numerische Methoden für die Simulation aeroakustischer Probleme mit kleinen Machzahlen. PhD thesis, Technische Universität Darmstadt Kornhaas M (2011) Effiziente numerische Methoden für die Simulation aeroakustischer Probleme mit kleinen Machzahlen. PhD thesis, Technische Universität Darmstadt
15.
Zurück zum Zitat Kornhaas M, Sternel DC, Schäfer M (2008) Influence of time step size and convergence criteria on large eddy simulations with implicit time discretization. In: Quality and Reliability of Large-Eddy Simulations, Ercoftac Series 12, Springer, pp 119–130 Kornhaas M, Sternel DC, Schäfer M (2008) Influence of time step size and convergence criteria on large eddy simulations with implicit time discretization. In: Quality and Reliability of Large-Eddy Simulations, Ercoftac Series 12, Springer, pp 119–130
16.
Zurück zum Zitat Kravchenko A, Moin P (2000) Numerical studies of flow over a circular cylinder at \(Re_D=3900\). Phys Fluids 12(2):403–417 MATHCrossRef Kravchenko A, Moin P (2000) Numerical studies of flow over a circular cylinder at \(Re_D=3900\). Phys Fluids 12(2):403–417 MATHCrossRef
17.
Zurück zum Zitat Lehnhäuser T, Schäfer M (2002) Improved linear interpolation practice for finite-volume schemes on complex grids. Int J Numer Methods Fluids 38:625–645 MATHCrossRef Lehnhäuser T, Schäfer M (2002) Improved linear interpolation practice for finite-volume schemes on complex grids. Int J Numer Methods Fluids 38:625–645 MATHCrossRef
18.
Zurück zum Zitat Lehnhäuser T, Ertem-Müller S, Schäfer M, Janicka J (2004) Advances in numerical methods for simulating turbulent flows. Prog Comput Fluid Mech 4:208–228 CrossRef Lehnhäuser T, Ertem-Müller S, Schäfer M, Janicka J (2004) Advances in numerical methods for simulating turbulent flows. Prog Comput Fluid Mech 4:208–228 CrossRef
20.
Zurück zum Zitat Lighthill M (1954) On sound generated aerodynamically. II. Turbulence as a source of sound. Proc Royal Soc London A 222:1–34 MATHMathSciNetCrossRef Lighthill M (1954) On sound generated aerodynamically. II. Turbulence as a source of sound. Proc Royal Soc London A 222:1–34 MATHMathSciNetCrossRef
21.
Zurück zum Zitat Piomelli U, Steett C, Sarkar S (1997) On the computation of sound by large-eddy simulations. J Eng Math 32:217–236 MATHCrossRef Piomelli U, Steett C, Sarkar S (1997) On the computation of sound by large-eddy simulations. J Eng Math 32:217–236 MATHCrossRef
22.
Zurück zum Zitat Pope SB (2001) Turbulent flows. Cambridge University Press, Cambridge Pope SB (2001) Turbulent flows. Cambridge University Press, Cambridge
23.
Zurück zum Zitat Schäfer M (2006) Computational engineering: introduction to numerical methods. Springer, Berlin Schäfer M (2006) Computational engineering: introduction to numerical methods. Springer, Berlin
24.
Zurück zum Zitat Seo JH, Moon YJ (2005) The perturbed compressible equations for aeroacoustic noise prediction at low mach numbers. AIAA J 43(8):1716–1724 CrossRef Seo JH, Moon YJ (2005) The perturbed compressible equations for aeroacoustic noise prediction at low mach numbers. AIAA J 43(8):1716–1724 CrossRef
25.
Zurück zum Zitat Serre E, Minguez M, Pasquetti R, Guilmineau E, Deng G, Kornhaas M, Schäfer M, Fröhlich J, Hinterberger C, Rodi W (2013) On simulating the turbulent flow around the Ahmed body: a French-German collaborative evaluation of LES and DES. Comput Fluids 78:10–23 MATHMathSciNetCrossRef Serre E, Minguez M, Pasquetti R, Guilmineau E, Deng G, Kornhaas M, Schäfer M, Fröhlich J, Hinterberger C, Rodi W (2013) On simulating the turbulent flow around the Ahmed body: a French-German collaborative evaluation of LES and DES. Comput Fluids 78:10–23 MATHMathSciNetCrossRef
26.
Zurück zum Zitat Shen W, Sørensen J (1999) Aeroacoustic modelling of low-speed flows. Theor Comput Fluid Dyn 13:271–289 MATHCrossRef Shen W, Sørensen J (1999) Aeroacoustic modelling of low-speed flows. Theor Comput Fluid Dyn 13:271–289 MATHCrossRef
27.
Zurück zum Zitat Shen W, Sørensen J (1999) Comment on the aeroacoustic formulation of Hardin and Pope. AIAA J 37(1):141–143 Shen W, Sørensen J (1999) Comment on the aeroacoustic formulation of Hardin and Pope. AIAA J 37(1):141–143
28.
Zurück zum Zitat Shen W, Michelsen J, Sørensen J (2004) A collocated grid finite volume method for aeroacoustic computations of low-speed flows. J Comput Phys 196:348–366 MATHCrossRef Shen W, Michelsen J, Sørensen J (2004) A collocated grid finite volume method for aeroacoustic computations of low-speed flows. J Comput Phys 196:348–366 MATHCrossRef
29.
Zurück zum Zitat Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment. Mon Weather Rev 91(3):99–164 CrossRef Smagorinsky J (1963) General circulation experiments with the primitive equations I. The basic experiment. Mon Weather Rev 91(3):99–164 CrossRef
30.
Zurück zum Zitat Toro E (1999) Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, Berlin MATHCrossRef Toro E (1999) Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, Berlin MATHCrossRef
31.
Zurück zum Zitat Wagner CA, Hüttl T, Sagaut P (eds) (2007) Large-eddy simulation for acoustics. Cambridge University Press, Cambridge Wagner CA, Hüttl T, Sagaut P (eds) (2007) Large-eddy simulation for acoustics. Cambridge University Press, Cambridge
32.
Zurück zum Zitat Winkler M (2007) Untersuchungen zum vibroakustischen Verhalten von Plattenstrukturen in Wirbelströmungen. Diplomarbeit, Fachhochschule Köln, Institut für Fahrzeugtechnik Winkler M (2007) Untersuchungen zum vibroakustischen Verhalten von Plattenstrukturen in Wirbelströmungen. Diplomarbeit, Fachhochschule Köln, Institut für Fahrzeugtechnik
Metadaten
Titel
Efficient numerical simulation of aeroacoustics for low Mach number flows interacting with structures
verfasst von
Michael Kornhaas
Michael Schäfer
Dörte C. Sternel
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 6/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1114-1

Weitere Artikel der Ausgabe 6/2015

Computational Mechanics 6/2015 Zur Ausgabe