Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.07.2013 | Original Article | Ausgabe 1/2013

Neural Computing and Applications 1/2013

Efficient railway tracks detection and turnouts recognition method using HOG features

Zeitschrift:
Neural Computing and Applications > Ausgabe 1/2013
Autoren:
Zhiquan Qi, Yingjie Tian, Yong Shi

Abstract

Railway tracks detection and turnouts recognition are the basic tasks in driver assistance systems, which can determine the interesting regions for detecting obstacles and signals. In this paper, a novel railway tracks detection and turnouts recognition method using HOG (Histogram of Oriented Gradients) features was presented. At first, the approach computes HOG features and establishes integral images, and then extracts railway tracks by region-growing algorithm. Then based on recognizing the open direction of the turnout, we find the path where the train will travel through. Experiments demonstrated that our method was able to correctly extract tracks and recognize turnouts even in very bad illumination conditions and run fast enough for practical use. In addition, our approach only needs a computer and a cheap camera installed in the railroad vehicle, not specialized hardwares and equipment.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2013

Neural Computing and Applications 1/2013 Zur Ausgabe

Premium Partner

    Bildnachweise