Skip to main content

2021 | OriginalPaper | Buchkapitel

9. EfficientNet-Based Convolutional Neural Networks for Tuberculosis Classification

verfasst von : Vinayakumar Ravi, Harini Narasimhan, Tuan D. Pham

Erschienen in: Advances in Artificial Intelligence, Computation, and Data Science

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tuberculosis (TB) is an infectious disease that remained as a major health threat in the world. The computer-aided diagnosis (CAD) system for TB is one of the automated methods in early diagnosis and treatment, particularly used in developing countries. Literature survey shows that many methods exist based on machine learning for TB classification using X-ray images. Recently, deep learning approaches have been used instead of machine learning in many applications. This is mainly due to the reason that deep learning can learn optimal features from the raw dataset implicitly and obtains better performances. Due to the lack of X-ray image TB datasets, there are a small number of works on deep learning addressing the image-based classification of TB. In addition, the existing works can only classify X-ray images of a patient as TB or Healthy. This work presents a detailed investigation and analysis of 26 pretrained convolutional neural network (CNN) models using a recently released and large public database of TB X-ray. The proposed models have the capability to classify X-ray of a patient as TB, Healthy, or Sick but non-TB. Various visualization methods are adopted to show the optimal features learnt by the pretrained CNN models. Most of the pretrained CNN models achieved above 99% accuracy and less than 0.005 loss with 15 epochs during the training. All 7 different types of EfficientNet (ENet)-based CNN models performed better in comparison to other models in terms of accuracy, average and macro precision, recall, F1 score. Moreover, the proposed ENet-based CNN models performed better than other existing methods such as VGG16 and ResNet-50 for TB classification tasks. These results demonstrate that ENet-based models can be effectively used as a useful tool for TB classification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fauci AS, Braunwald E, Kasper DL, Harrison TR (2009) Princípios de medicina interna, vol I. McGraw-Hill Interamericana, Madrid Fauci AS, Braunwald E, Kasper DL, Harrison TR (2009) Princípios de medicina interna, vol I. McGraw-Hill Interamericana, Madrid
2.
Zurück zum Zitat Golub JE, Bur S, Cronin WA, Gange S, Baruch N, Comstock GW, Chaisson RE (2006) Delayed tuberculosis diagnosis and tuberculosis transmission. Int J Tuberc Lung Dis 10(1):24–30PubMed Golub JE, Bur S, Cronin WA, Gange S, Baruch N, Comstock GW, Chaisson RE (2006) Delayed tuberculosis diagnosis and tuberculosis transmission. Int J Tuberc Lung Dis 10(1):24–30PubMed
3.
Zurück zum Zitat World Health Organization (2019) Global tuberculosis report 2019. World Health Organization, Geneva World Health Organization (2019) Global tuberculosis report 2019. World Health Organization, Geneva
4.
Zurück zum Zitat World Health Organization (2020) Global tuberculosis report 2020. World Health Organization, Geneva World Health Organization (2020) Global tuberculosis report 2020. World Health Organization, Geneva
5.
Zurück zum Zitat Leung CC (2011) Reexamining the role of radiography in tuberculosis case finding. Int J Tuberc Lung Dis 15(10):1279 Leung CC (2011) Reexamining the role of radiography in tuberculosis case finding. Int J Tuberc Lung Dis 15(10):1279
6.
Zurück zum Zitat Melendez J, Sánchez CI, Philipsen RH, Maduskar P, Dawson R, Theron G, Van Ginneken B (2016) An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Sci Rep 6:25265 Melendez J, Sánchez CI, Philipsen RH, Maduskar P, Dawson R, Theron G, Van Ginneken B (2016) An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Sci Rep 6:25265
7.
Zurück zum Zitat Colombo Filho ME, Galliez RM, Bernardi FA, de Oliveira LL, Kritski A, Santos MK, Alves D (2020) Preliminary results on pulmonary tuberculosis detection in chest X-ray using convolutional neural networks. In: International Conference on Computational Science, pp 563–576. Springer, Cham Colombo Filho ME, Galliez RM, Bernardi FA, de Oliveira LL, Kritski A, Santos MK, Alves D (2020) Preliminary results on pulmonary tuberculosis detection in chest X-ray using convolutional neural networks. In: International Conference on Computational Science, pp 563–576. Springer, Cham
8.
Zurück zum Zitat Oloko-Oba M, Viriri S (2020) Tuberculosis abnormality detection in chest X-rays: a deep learning approach. In: International Conference on Computer Vision and Graphics, pp 121–132. Springer, Cham Oloko-Oba M, Viriri S (2020) Tuberculosis abnormality detection in chest X-rays: a deep learning approach. In: International Conference on Computer Vision and Graphics, pp 121–132. Springer, Cham
9.
Zurück zum Zitat Abideen ZU, Ghafoor M, Munir K, Saqib M, Ullah A, Zia T, Zahra A (2020) Uncertainty assisted robust tuberculosis identification with Bayesian convolutional neural networks. IEEE Access 8:22812–22825 Abideen ZU, Ghafoor M, Munir K, Saqib M, Ullah A, Zia T, Zahra A (2020) Uncertainty assisted robust tuberculosis identification with Bayesian convolutional neural networks. IEEE Access 8:22812–22825
10.
Zurück zum Zitat Cao Y, Liu C, Liu B, Brunette MJ, Zhang N, Sun T, Curioso WH (2016) Improving tuberculosis diagnostics using deep learning and mobile health technologies among resource-poor and marginalized communities. In: 2016 IEEE first international conference on connected health: applications, systems and engineering technologies (CHASE), pp 274–281. IEEE Cao Y, Liu C, Liu B, Brunette MJ, Zhang N, Sun T, Curioso WH (2016) Improving tuberculosis diagnostics using deep learning and mobile health technologies among resource-poor and marginalized communities. In: 2016 IEEE first international conference on connected health: applications, systems and engineering technologies (CHASE), pp 274–281. IEEE
11.
Zurück zum Zitat Xie Y, Wu Z, Han X, Wang H, Wu Y, Cui L, Chen Z (2020) Computer-aided system for the detection of multicategory pulmonary tuberculosis in radiographs. J Healthcare Eng Xie Y, Wu Z, Han X, Wang H, Wu Y, Cui L, Chen Z (2020) Computer-aided system for the detection of multicategory pulmonary tuberculosis in radiographs. J Healthcare Eng
12.
Zurück zum Zitat Liu Y, Wu YH, Ban Y, Wang H, Cheng MM (2020) Rethinking computer-aided tuberculosis diagnosis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2646–2655 Liu Y, Wu YH, Ban Y, Wang H, Cheng MM (2020) Rethinking computer-aided tuberculosis diagnosis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 2646–2655
13.
Zurück zum Zitat Sun J, Chong P, Tan YXM, Binder A (2017) ImageCLEF 2017: ImageCLEF tuberculosis task-the SGEast submission. In: CLEF (working notes) Sun J, Chong P, Tan YXM, Binder A (2017) ImageCLEF 2017: ImageCLEF tuberculosis task-the SGEast submission. In: CLEF (working notes)
14.
Zurück zum Zitat Cid YD, Liauchuk V, Kovalev V, Müller H (2018) Overview of ImageCLEFtuberculosis 2018-etecting multi-drug resistance, classifying tuberculosis types and assessing severity scores. In: CLEF (working notes) Cid YD, Liauchuk V, Kovalev V, Müller H (2018) Overview of ImageCLEFtuberculosis 2018-etecting multi-drug resistance, classifying tuberculosis types and assessing severity scores. In: CLEF (working notes)
15.
Zurück zum Zitat Gentili A (2018) ImageCLEF2018: transfer learning for deep learning with CNN for tuberculosis classification. In: CLEF (working notes) Gentili A (2018) ImageCLEF2018: transfer learning for deep learning with CNN for tuberculosis classification. In: CLEF (working notes)
16.
Zurück zum Zitat Hamadi A, Cheikh NB, Zouatine Y, Menad SMB, Djebbara MR (2019) ImageCLEF 2019: deep learning for tuberculosis CT image analysis. In: CLEF (working notes) Hamadi A, Cheikh NB, Zouatine Y, Menad SMB, Djebbara MR (2019) ImageCLEF 2019: deep learning for tuberculosis CT image analysis. In: CLEF (working notes)
17.
Zurück zum Zitat Che J, Ding H, Zhou X (2020) Chejiao at ImageCLEFmed tuberculosis 2020: CT report generation based on transfer learning. In: CLEF2020 working notes. CEUR workshop proceedings, Thessaloniki, Greece, CEUR-WS. http://ceurws.org (September 22–25 2020) Che J, Ding H, Zhou X (2020) Chejiao at ImageCLEFmed tuberculosis 2020: CT report generation based on transfer learning. In: CLEF2020 working notes. CEUR workshop proceedings, Thessaloniki, Greece, CEUR-WS. http://​ceurws.​org (September 22–25 2020)
18.
Zurück zum Zitat Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan F, Thoma G (2013) Automatic tuberculosis screening using chest radiographs. IEEE Trans Med Imaging 33(2):233–245 Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan F, Thoma G (2013) Automatic tuberculosis screening using chest radiographs. IEEE Trans Med Imaging 33(2):233–245
19.
Zurück zum Zitat Hooda R, Sofat S, Kaur S, Mittal A, Meriaudeau F (2017) Deep-learning: a potential method for tuberculosis detection using chest radiography. In: 2017 IEEE international conference on signal and image processing applications (ICSIPA), pp 497–502. IEEE Hooda R, Sofat S, Kaur S, Mittal A, Meriaudeau F (2017) Deep-learning: a potential method for tuberculosis detection using chest radiography. In: 2017 IEEE international conference on signal and image processing applications (ICSIPA), pp 497–502. IEEE
20.
Zurück zum Zitat Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2):574–582CrossRefPubMed Lakhani P, Sundaram B (2017) Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2):574–582CrossRefPubMed
21.
Zurück zum Zitat Pasa F, Golkov V, Pfeiffer F, Cremers D, Pfeiffer D (2019) Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization. Sci Rep 9(1):1–9CrossRef Pasa F, Golkov V, Pfeiffer F, Cremers D, Pfeiffer D (2019) Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization. Sci Rep 9(1):1–9CrossRef
23.
Zurück zum Zitat Lopes UK, Valiati JF (2017) Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Comput Biol Med 89:135–143CrossRefPubMed Lopes UK, Valiati JF (2017) Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Comput Biol Med 89:135–143CrossRefPubMed
24.
Zurück zum Zitat Samuel RDJ, Kanna BR (2019) Tuberculosis (TB) detection system using deep neural networks. Neural Comput Appl 31(5):1533–1545CrossRef Samuel RDJ, Kanna BR (2019) Tuberculosis (TB) detection system using deep neural networks. Neural Comput Appl 31(5):1533–1545CrossRef
25.
Zurück zum Zitat Nguyen QH, Nguyen BP, Dao SD, Unnikrishnan B, Dhingra R, Ravichandran SR, Chua MC (2019) Deep learning models for tuberculosis detection from chest X-ray images. In: 2019 26th international conference on telecommunications (ICT), pp 381–385. IEEE Nguyen QH, Nguyen BP, Dao SD, Unnikrishnan B, Dhingra R, Ravichandran SR, Chua MC (2019) Deep learning models for tuberculosis detection from chest X-ray images. In: 2019 26th international conference on telecommunications (ICT), pp 381–385. IEEE
26.
Zurück zum Zitat Evangelista LGC, Guedes EB (2019) Ensembles of convolutional neural networks on computer-aided pulmonary tuberculosis detection. IEEE Lat Am Trans 17(12):1954–1963CrossRef Evangelista LGC, Guedes EB (2019) Ensembles of convolutional neural networks on computer-aided pulmonary tuberculosis detection. IEEE Lat Am Trans 17(12):1954–1963CrossRef
27.
Zurück zum Zitat Munadi K, Muchtar K, Maulina N, Pradhan B (2020) Image enhancement for tuberculosis detection using deep learning. IEEE Access Munadi K, Muchtar K, Maulina N, Pradhan B (2020) Image enhancement for tuberculosis detection using deep learning. IEEE Access
28.
Zurück zum Zitat Rahman T, Khandakar A, Kadir MA, Islam KR, Islam KF, Mazhar R, Ayari MA (2020) Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization. IEEE Access 8:191586–191601 Rahman T, Khandakar A, Kadir MA, Islam KR, Islam KF, Mazhar R, Ayari MA (2020) Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization. IEEE Access 8:191586–191601
29.
Zurück zum Zitat Sathitratanacheewin S, Pongpirul K (2018) Deep learning for automated classification of tuberculosis-related chest X-ray: dataset specificity limits diagnostic performance generalizability. arXiv:1811.07985 Sathitratanacheewin S, Pongpirul K (2018) Deep learning for automated classification of tuberculosis-related chest X-ray: dataset specificity limits diagnostic performance generalizability. arXiv:​1811.​07985
30.
Zurück zum Zitat Chithra RS, Jagatheeswari P (2020) Severity detection and infection level identification of tuberculosis using deep learning. Int J Imaging Syst Technol 30(4):994–1011CrossRef Chithra RS, Jagatheeswari P (2020) Severity detection and infection level identification of tuberculosis using deep learning. Int J Imaging Syst Technol 30(4):994–1011CrossRef
31.
Zurück zum Zitat Guo R, Passi K, Jain CK (2020) Tuberculosis diagnostics and localization in chest X-rays via deep learning models. Front Artif Intell 3:74CrossRef Guo R, Passi K, Jain CK (2020) Tuberculosis diagnostics and localization in chest X-rays via deep learning models. Front Artif Intell 3:74CrossRef
34.
Zurück zum Zitat Chauhan A, Chauhan D, Rout C (2014) Role of gist and PHOG features in computer-aided diagnosis of tuberculosis without segmentation. PLoS One 9(11):e112980CrossRefPubMedPubMedCentral Chauhan A, Chauhan D, Rout C (2014) Role of gist and PHOG features in computer-aided diagnosis of tuberculosis without segmentation. PLoS One 9(11):e112980CrossRefPubMedPubMedCentral
Metadaten
Titel
EfficientNet-Based Convolutional Neural Networks for Tuberculosis Classification
verfasst von
Vinayakumar Ravi
Harini Narasimhan
Tuan D. Pham
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-69951-2_9