Skip to main content
Erschienen in: Telecommunication Systems 2/2021

20.08.2020

EHCR-FCM: Energy Efficient Hierarchical Clustering and Routing using Fuzzy C-Means for Wireless Sensor Networks

verfasst von: Akhilesh Panchal, Rajat Kumar Singh

Erschienen in: Telecommunication Systems | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless Sensor Network (WSN) is a part of Internet of Things (IoT), and has been used for sensing and collecting the important information from the surrounding environment. Energy consumption in this process is the most important issue, which primarily depends on the clustering technique and packet routing strategy. In this paper, we propose an Energy efficient Hierarchical Clustering and Routing using Fuzzy C-Means (EHCR-FCM) which works on three-layer structure, and depends upon the centroid of the clusters and grids, relative Euclidean distances and residual energy of the nodes. This technique is useful for the optimal usage of energy by employing grid and cluster formation in a dynamic manner and energy-efficient routing. The fitness value of the nodes have been used in this proposed work to decide that whether it may work as the Grid Head (GH) or Cluster Head (CH). The packet routing strategy of all the GHs depend upon the relative Euclidean distances among them, and also on their residual energy. In addition to this, we have also performed the energy consumption analysis, and found that our proposed approach is more energy efficient, better in terms of the number of cluster formation, network lifetime, and it also provides better coverage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhong, C. l., Zhu, Z., & Huang, R. G. (2017). Study on the IOT architecture and access technology. In 16th International symposium on distributed computing and applications to business, engineering and science (DCABES), Anyang, pp. 113–116. Zhong, C. l., Zhu, Z., & Huang, R. G. (2017). Study on the IOT architecture and access technology. In 16th International symposium on distributed computing and applications to business, engineering and science (DCABES), Anyang, pp. 113–116.
2.
Zurück zum Zitat Zhang, H., Li, J., Wen, B., Xun, Y., & Liu, J. (2018). Connecting intelligent things in smart hospitals using NB-IoT. IEEE Internet of Things Journal, 5(3), 1550–1560.CrossRef Zhang, H., Li, J., Wen, B., Xun, Y., & Liu, J. (2018). Connecting intelligent things in smart hospitals using NB-IoT. IEEE Internet of Things Journal, 5(3), 1550–1560.CrossRef
3.
Zurück zum Zitat Lee, H. C., & Ke, K. H. (2018). Monitoring of large-area IoT sensors using a LoRa wireless mesh network system: design and evaluation. IEEE Transactions on Instrumentation and Measurement, 67(9), 2177–2187.CrossRef Lee, H. C., & Ke, K. H. (2018). Monitoring of large-area IoT sensors using a LoRa wireless mesh network system: design and evaluation. IEEE Transactions on Instrumentation and Measurement, 67(9), 2177–2187.CrossRef
4.
Zurück zum Zitat Wang, X., Zhang, H., Fan, S., & Gu, H. (2018). Coverage control of sensor networks in IoT based on RPSO. IEEE Internet of Things Journal, 5(5), 3521–3532.CrossRef Wang, X., Zhang, H., Fan, S., & Gu, H. (2018). Coverage control of sensor networks in IoT based on RPSO. IEEE Internet of Things Journal, 5(5), 3521–3532.CrossRef
5.
Zurück zum Zitat Zoller, T., Nagel, C., Ehrenpfordt, R., & Zimmermann, A. (2017). Packaging of small-scale thermoelectric generators for autonomous sensor nodes. IEEE Transactions on Components, Packaging and Manufacturing Technology, 7(7), 1043–1049.CrossRef Zoller, T., Nagel, C., Ehrenpfordt, R., & Zimmermann, A. (2017). Packaging of small-scale thermoelectric generators for autonomous sensor nodes. IEEE Transactions on Components, Packaging and Manufacturing Technology, 7(7), 1043–1049.CrossRef
6.
Zurück zum Zitat Sharma, P. K., Jeong, Y. S., & Park, J. H. (2018). EH-HL: Effective communication model by integrated EH-WSN and hybrid LiFi/WiFi for IoT. IEEE Internet of Things Journal, 5(3), 1719–1726.CrossRef Sharma, P. K., Jeong, Y. S., & Park, J. H. (2018). EH-HL: Effective communication model by integrated EH-WSN and hybrid LiFi/WiFi for IoT. IEEE Internet of Things Journal, 5(3), 1719–1726.CrossRef
7.
Zurück zum Zitat Ozdemir, S., & Xiao, Y. (2009). Secure data aggregation in wireless sensor networks: A comprehensive overview. Computer Networks, 53(12), 2022–2037.CrossRef Ozdemir, S., & Xiao, Y. (2009). Secure data aggregation in wireless sensor networks: A comprehensive overview. Computer Networks, 53(12), 2022–2037.CrossRef
8.
Zurück zum Zitat Kuila, P., & Jana, P. K. (2014). Approximation schemes for load balanced clustering in wireless sensor networks. The Journal of Supercomputing, 68, 87–105.CrossRef Kuila, P., & Jana, P. K. (2014). Approximation schemes for load balanced clustering in wireless sensor networks. The Journal of Supercomputing, 68, 87–105.CrossRef
9.
Zurück zum Zitat Deif, D. S., & Gadallah, Y. (2014). Classification of wireless sensor networks deployment techniques. IEEE Communications Surveys & Tutorials, 16(2), 834–855.CrossRef Deif, D. S., & Gadallah, Y. (2014). Classification of wireless sensor networks deployment techniques. IEEE Communications Surveys & Tutorials, 16(2), 834–855.CrossRef
10.
Zurück zum Zitat Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communication, 30, 2826–2841.CrossRef Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communication, 30, 2826–2841.CrossRef
11.
Zurück zum Zitat Rajagopalan, R., & Varshney, P. K. (2006). Data-aggregation techniques in sensor networks: A survey. IEEE Communications Surveys & Tutorials, 8(4), 48–63.CrossRef Rajagopalan, R., & Varshney, P. K. (2006). Data-aggregation techniques in sensor networks: A survey. IEEE Communications Surveys & Tutorials, 8(4), 48–63.CrossRef
12.
Zurück zum Zitat Boubiche, S., Boubiche, D. E., Bilami A., & Toral-Cruz, H. (2018). Big data challenges and data aggregation strategies in wireless sensor networks. In IEEE access, Vol. 6, pp. 20558–20571. Boubiche, S., Boubiche, D. E., Bilami A., & Toral-Cruz, H. (2018). Big data challenges and data aggregation strategies in wireless sensor networks. In IEEE access, Vol. 6, pp. 20558–20571.
13.
Zurück zum Zitat Jothiprakasam, S., & Muthial, C. (2018). A method to enhance lifetime in data aggregation for multi-hop wireless sensor networks. AEU: International Journal of Electronics and Communications, 85, 183–191. Jothiprakasam, S., & Muthial, C. (2018). A method to enhance lifetime in data aggregation for multi-hop wireless sensor networks. AEU: International Journal of Electronics and Communications, 85, 183–191.
14.
Zurück zum Zitat Kang, B., Nguyen, P. K. H., Zalyubovskiy, V., & Choo, H. (2017). SenCar: A distributed delay-efficient data aggregation scheduling for duty-cycled WSNs. IEEE Sensors Journal, 17(11), 3422–3437.CrossRef Kang, B., Nguyen, P. K. H., Zalyubovskiy, V., & Choo, H. (2017). SenCar: A distributed delay-efficient data aggregation scheduling for duty-cycled WSNs. IEEE Sensors Journal, 17(11), 3422–3437.CrossRef
15.
Zurück zum Zitat Ambigavathi, M., & Sridharan, D. (2018). Energy-aware data aggregation techniques in wireless sensor network In Advances in power systems and energy management, Springer, pp. 165–173. Ambigavathi, M., & Sridharan, D. (2018). Energy-aware data aggregation techniques in wireless sensor network In Advances in power systems and energy management, Springer, pp. 165–173.
16.
Zurück zum Zitat Wu, D., & Wong, M. H. (2011). Fast and simulation data aggregation over multiple regions in wireless sensor networks. IEEE Transactions on System, Man and Cybernetics, Part C (Applications and Reviews), 41(3), 333–343.CrossRef Wu, D., & Wong, M. H. (2011). Fast and simulation data aggregation over multiple regions in wireless sensor networks. IEEE Transactions on System, Man and Cybernetics, Part C (Applications and Reviews), 41(3), 333–343.CrossRef
17.
Zurück zum Zitat Harb, H., Makhoul, A., Tawbi, S., & Couturier, R. (2017). Comparison of different data aggregation techniques in distributed sensor networks. In IEEE access, Vol. 5, pp. 4250–4263. Harb, H., Makhoul, A., Tawbi, S., & Couturier, R. (2017). Comparison of different data aggregation techniques in distributed sensor networks. In IEEE access, Vol. 5, pp. 4250–4263.
18.
Zurück zum Zitat Oommen, A. A., Singh, C. S., & Manikandan, M. (2014). Design of face recognition system using principal component analysis. The International Journal of Engineering Research and Technology, 3(1), 6–10. Oommen, A. A., Singh, C. S., & Manikandan, M. (2014). Design of face recognition system using principal component analysis. The International Journal of Engineering Research and Technology, 3(1), 6–10.
19.
Zurück zum Zitat Kaur, T., & Baek, J. (2009). A strategic deployment and cluster-header selection for wireless sensor networks. IEEE Transactions on Consumer Electronics, 55(4), 1890–1897.CrossRef Kaur, T., & Baek, J. (2009). A strategic deployment and cluster-header selection for wireless sensor networks. IEEE Transactions on Consumer Electronics, 55(4), 1890–1897.CrossRef
20.
Zurück zum Zitat Li, J., Silva, B., Diyan, M., Cao, Z., & Han, K. (2018). A clustering based routing algorithm in IoT aware wireless mesh networks. Sustainable Cities and Society, 40, 657–666.CrossRef Li, J., Silva, B., Diyan, M., Cao, Z., & Han, K. (2018). A clustering based routing algorithm in IoT aware wireless mesh networks. Sustainable Cities and Society, 40, 657–666.CrossRef
21.
Zurück zum Zitat Liu, X., & Zhang, P. (2018). Data drainage: A novel load balancing strategy for wireless sensor networks. IEEE Communications Letters, 22(1), 125–128.CrossRef Liu, X., & Zhang, P. (2018). Data drainage: A novel load balancing strategy for wireless sensor networks. IEEE Communications Letters, 22(1), 125–128.CrossRef
22.
Zurück zum Zitat Pal, V., Singh, G., & Yadav, R. P. (2015). Balanced cluster size solution to extend lifetime of wireless sensor networks. IEEE Internet of Things Journal, 2(5), 399–401.CrossRef Pal, V., Singh, G., & Yadav, R. P. (2015). Balanced cluster size solution to extend lifetime of wireless sensor networks. IEEE Internet of Things Journal, 2(5), 399–401.CrossRef
23.
Zurück zum Zitat Guravaiah, K., & Velusamy, R. L. (2017). Energy efficient clustering algorithm using RFD based multi-hop communication in wireless sensor networks. Wireless Personal Communications, 95, 3557–3584.CrossRef Guravaiah, K., & Velusamy, R. L. (2017). Energy efficient clustering algorithm using RFD based multi-hop communication in wireless sensor networks. Wireless Personal Communications, 95, 3557–3584.CrossRef
24.
Zurück zum Zitat Deosarkar, B. P., Yadav, N. S. & Yadav, R. P. (2008). Clusterhead selection in clustering algorithms for wireless sensor networks: A survey. In International conference on computing, communication and networking, St. Thomas, pp. 1–8. Deosarkar, B. P., Yadav, N. S. & Yadav, R. P. (2008). Clusterhead selection in clustering algorithms for wireless sensor networks: A survey. In International conference on computing, communication and networking, St. Thomas, pp. 1–8.
25.
Zurück zum Zitat Liu, T., Li, Q., & Liang, P. (2012). An energy-balanced clustering approach for gradient-based routing in wireless sensor networks. Computer Communications, 35(17), 2150–2161.CrossRef Liu, T., Li, Q., & Liang, P. (2012). An energy-balanced clustering approach for gradient-based routing in wireless sensor networks. Computer Communications, 35(17), 2150–2161.CrossRef
26.
Zurück zum Zitat Amini, N., Vahdatpour, A., Xu, W., Gerla, M., & Sarrafzadeh, M. (2012). Cluster size optimization in sensor networks with decentralized cluster-based protocols. Computer Communications, 35(2), 207–220.CrossRef Amini, N., Vahdatpour, A., Xu, W., Gerla, M., & Sarrafzadeh, M. (2012). Cluster size optimization in sensor networks with decentralized cluster-based protocols. Computer Communications, 35(2), 207–220.CrossRef
27.
Zurück zum Zitat Wang, N., & Zhu, H. (2012). An energy efficient algrithm based on LEACH protocol. In International conference on computer science and electronics engineering, Hangzhou, pp. 339–342. Wang, N., & Zhu, H. (2012). An energy efficient algrithm based on LEACH protocol. In International conference on computer science and electronics engineering, Hangzhou, pp. 339–342.
28.
Zurück zum Zitat Gustafson, D. E., & Kessel, W. C. (1978). Fuzzy clustering with a fuzzy covariance matrix. In IEEE conference on decision and control including the 17th symposium on adaptive processes, San Diego, pp. 761–766. Gustafson, D. E., & Kessel, W. C. (1978). Fuzzy clustering with a fuzzy covariance matrix. In IEEE conference on decision and control including the 17th symposium on adaptive processes, San Diego, pp. 761–766.
29.
Zurück zum Zitat Yang, M. S. (1993). A survey of fuzzy clustering. Mathematical and Computer Modelling, 18(11), 1–16.CrossRef Yang, M. S. (1993). A survey of fuzzy clustering. Mathematical and Computer Modelling, 18(11), 1–16.CrossRef
30.
Zurück zum Zitat Ni, Q., Pan, Q., Du, H., Cao, C., & Zhai, Y. (2017). A novel cluster head selection algorithm based on fuzzy clustering and particle swarm optimization. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14(1), 76–84.CrossRef Ni, Q., Pan, Q., Du, H., Cao, C., & Zhai, Y. (2017). A novel cluster head selection algorithm based on fuzzy clustering and particle swarm optimization. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14(1), 76–84.CrossRef
31.
Zurück zum Zitat Kapoor, A., & Singhal, A. (2017). A comparative study of K-means, K-Means++ and fuzzy C-means clustering algorithms. In 3rd International conference on computational intelligence and communication technology (CICT), Ghaziabad, pp. 1–6. Kapoor, A., & Singhal, A. (2017). A comparative study of K-means, K-Means++ and fuzzy C-means clustering algorithms. In 3rd International conference on computational intelligence and communication technology (CICT), Ghaziabad, pp. 1–6.
32.
Zurück zum Zitat Wang, Q., Guo, S., Hu, J., & Yang, Y. (2018). Spectral partitioning and fuzzy C-means based clustering algorithm for big data wireless sensor networks. Journal on Wireless Communications and Networking, 2018, 54.CrossRef Wang, Q., Guo, S., Hu, J., & Yang, Y. (2018). Spectral partitioning and fuzzy C-means based clustering algorithm for big data wireless sensor networks. Journal on Wireless Communications and Networking, 2018, 54.CrossRef
34.
Zurück zum Zitat Hoang, D. C., Kumar R., & Panda, S. K. (2010). Fuzzy C-means clustering protocol for wireless sensor networks. In IEEE international symposium on industrial electronics, Bari, pp. 3477–3482. Hoang, D. C., Kumar R., & Panda, S. K. (2010). Fuzzy C-means clustering protocol for wireless sensor networks. In IEEE international symposium on industrial electronics, Bari, pp. 3477–3482.
35.
Zurück zum Zitat Zhixiang, D. & Bensheng, Q. (2007). Three-layered routing protocol for WSN based on LEACH algorithm. In IET conference on wireless, mobile and sensor networks (CCWMSN07), Shanghai, pp. 72–75. Zhixiang, D. & Bensheng, Q. (2007). Three-layered routing protocol for WSN based on LEACH algorithm. In IET conference on wireless, mobile and sensor networks (CCWMSN07), Shanghai, pp. 72–75.
36.
Zurück zum Zitat Lee, J. S., & Kao, T. Y. (2016). An improved three-layer low-energy adaptive clustering hierarchy for wireless sensor networks. IEEE Internet of Things Journal, 3(6), 951–958.CrossRef Lee, J. S., & Kao, T. Y. (2016). An improved three-layer low-energy adaptive clustering hierarchy for wireless sensor networks. IEEE Internet of Things Journal, 3(6), 951–958.CrossRef
37.
Zurück zum Zitat Handy, M. J., Haase, M., & Timmermann, D. (2002). Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In 4th International workshop on mobile and wireless communications network, pp. 368–372. Handy, M. J., Haase, M., & Timmermann, D. (2002). Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In 4th International workshop on mobile and wireless communications network, pp. 368–372.
38.
Zurück zum Zitat Heinzelman, W. R., Chandrakasan, A. & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual hawaii international conference on system sciences, Maui, pp. 1–10. Heinzelman, W. R., Chandrakasan, A. & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual hawaii international conference on system sciences, Maui, pp. 1–10.
39.
Zurück zum Zitat Kumar, N., & Vidyarthi, D. P. (2018). A green routing algorithm for IoT-enabled software defined wireless sensor network. IEEE Sensors Journal, 18(22), 9449–9460.CrossRef Kumar, N., & Vidyarthi, D. P. (2018). A green routing algorithm for IoT-enabled software defined wireless sensor network. IEEE Sensors Journal, 18(22), 9449–9460.CrossRef
40.
Zurück zum Zitat Schneider, J. & Wattenhofer, R. (2011). Trading bit, message, and time complexity of distributed algorithms. In 25th International symposium on distributed computing (DISC), pp. 51–65. Schneider, J. & Wattenhofer, R. (2011). Trading bit, message, and time complexity of distributed algorithms. In 25th International symposium on distributed computing (DISC), pp. 51–65.
41.
Zurück zum Zitat Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef
42.
Zurück zum Zitat Nudurupati, D. P., & Singh, R. K. (2013). Enhancing coverage ratio using mobility in heterogeneous wireless sensor networks. In CIMTA, Elsevier, pp. 538–545. Nudurupati, D. P., & Singh, R. K. (2013). Enhancing coverage ratio using mobility in heterogeneous wireless sensor networks. In CIMTA, Elsevier, pp. 538–545.
Metadaten
Titel
EHCR-FCM: Energy Efficient Hierarchical Clustering and Routing using Fuzzy C-Means for Wireless Sensor Networks
verfasst von
Akhilesh Panchal
Rajat Kumar Singh
Publikationsdatum
20.08.2020
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 2/2021
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-020-00712-7

Weitere Artikel der Ausgabe 2/2021

Telecommunication Systems 2/2021 Zur Ausgabe

Neuer Inhalt