Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

30.09.2020 | Regular Paper | Ausgabe 2/2021

The VLDB Journal 2/2021

EI-LSH: An early-termination driven I/O efficient incremental c-approximate nearest neighbor search

Zeitschrift:
The VLDB Journal > Ausgabe 2/2021
Autoren:
Wanqi Liu, Hanchen Wang, Ying Zhang, Wei Wang, Lu Qin, Xuemin Lin
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Nearest neighbor in high-dimensional space has been widely used in various fields such as databases, data mining and machine learning. The problem has been well solved in low-dimensional space. However, when it comes to high-dimensional space, due to the curse of dimensionality, the problem is challenging. As a trade-off between accuracy and efficiency, c-approximate nearest neighbor (c-ANN) is considered instead of an exact NN search in high-dimensional space. A variety of c-ANN algorithms have been proposed, one of the important schemes for the c-ANN problem is called Locality-sensitive hashing (LSH), which projects a high-dimensional dataset into a low-dimensional dataset and can return a c-ANN with a constant probability. In this paper, we propose a new aggressive early-termination (ET) condition which stops the algorithm with LSH scheme earlier under the same theoretical guarantee, leading to a smaller I/O cost and less running time. Unlike the “conservative” early termination conditions used in previous studies, we propose an “aggressive” early termination condition which can stop much earlier. Though it is not absolutely safe and may result in the probability of failure, we can still devise more efficient algorithms under the same theoretical guarantee by carefully considering the failure probabilities brought by LSH scheme and early termination. Furthermore, we also introduce an incremental searching strategy. Unlike the previous LSH methods, which expand the bucket width in an exponential way, we employ a more natural search strategy to incrementally access the hash values of the objects. We also provide a rigorous theoretical analysis to underpin our incremental search strategy and the new early termination technique. Our comprehensive experiment results show that, compared with the state-of-the-art I/O efficient c-ANN techniques, our proposed algorithm, namely EI-LSH, can achieve much better I/O efficiency under the same theoretical guarantee.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2021

The VLDB Journal 2/2021 Zur Ausgabe

Premium Partner