Skip to main content
main-content

Über dieses Buch

Mathematik als propädeutisches Fach am Beginn eines wirtschaftswissenschaft­ lichen Studiums: Was soll gelehrt werden? Wie soll gelehrt werden? Wie um­ fangreich darf oder muß der Inhalt sein? Soviele Personen, soviele Meinungen wird es dazu geben. Bei der Konzeption des vorliegenden Buches und somit bei der Beantwortung der aufgeworfenen Fragen sind wir zum einen von den Gegebenheiten des Studi­ ums der Wirtschaftswissenschaften an der Technischen Universität Chemnitz­ Zwickau ausgegangen, das lediglich ein Semester zuzüglich eines einwöchigen Vorkurses vor dem eigentlichen Studienbeginn umfaßt. Zum anderen sind un­ sere langjährigen Lehrerfahrungen eingeflossen. Beides führte zu folgenden, in diesem Lehrbuch realisierten Positionen: • Mathematik muß verständlich, aber korrekt gelehrt werden. Will heißen: Im Vordergrund steht der "Normalfall" einer Formel, eines Algorithmus, einer mathematischen Aussage; Sonderfälle, Entartungen, notwendige Voraus­ setzungen werden besprochen, aber nicht in den Vordergrund geschoben. • Ein Wirtschaftswissenschaftler soll Mathematik anwenden. Will heißen: Er muß wissen, was Mathematik ist und kann. Er muß wichtige ma­ thematische Begriffe kennen und sicher beherrschen. Er muß fundamentale Lösungsmethoden kennen und an kleinen Beispielen ausprobiert haben, um de­ ren wichtigste Eigenschaften und Anwendungsmöglichkeiten nutzen und ihre Grenzen einschätzen zu können. Er muß gewisse Fertigkeiten im Umgang mit der Mathematik als "Handwerkszeug" für wirtschaftswissenschaftliche Unter­ suchungen erwerben. Er soll aber nicht unbedingt die mathematische Theorie weiterentwickeln. Deshalb stehen auch die Demonstration mathematischer Aus­ sagen an Beispielen im Vordergrund, während Beweise sehr kurz wegkommen und nur exemplarischen Einblick in mathematische Denkweisen gewähren.

Inhaltsverzeichnis

Frontmatter

Kapitel 1. Grundlagen

Zusammenfassung
In diesem Kapitel werden die für das Verständnis des vorliegenden Buches wesentlichen Grundbegriffe und Rechenregeln der Schulmathematik noch einmal kurz dargestellt und an einigen Beispielen (mit Lösungen) illustriert. Anhand von weiteren Übungsaufgaben kann der Leser überprüfen, ob er die behandelten Teilgebiete der Mathematik ausreichend beherrscht.
Bernd Luderer, Uwe Würker

Kapitel 2. Logik und Mengenlehre

Zusammenfassung
In diesem Kapitel werden die Grundlagen der mathematischen Logik und der Mengenlehre behandelt. Die dabei eingeführten Begriffe und Denkweisen sind von besonderer Bedeutung für die folgenden Kapitel, da sie die Basis für das Verständnis aller weiterführender mathematischen Betrachtungen sind.
Bernd Luderer, Uwe Würker

Kapitel 3. Finanzmathematik

Zusammenfassung
In diesem Kapitel werden betriebs- und volkswirtschaftlich wichtige Fragen wie die Bewertung von Zahlungen zu unterschiedlichen Zeitpunkten, Zinsen als Äquivalent für das Überlassen eines Kapitals, Ermittlung von Kapitalwerten als Bewertungsgrundlage von Investitionen u.a. behandelt.
Bernd Luderer, Uwe Würker

Kapitel 4. Lineare Algebra

Zusammenfassung
In diesem Kapitel werden wir ein wichtiges neues mathematisches Objekt (so wie etwa Zahlen, Vektoren in der Ebene oder Funktionen) kennenlernen, das zur einfachen Beschreibung mathematischer Zusammenhänge dient: die Matrix. Insbesondere bei der übersichtlichen Darstellung ökonomischer Zusammenhänge und Gesetzmäßigkeiten wie z.B. der Beschreibung von miteinander verbundenen Produktionsprozessen, Bilanzbeziehungen oder bei der Formulierung linearer Optimierungsaufgaben leistet der Begriff der Matrix wertvolle Dienste. Auch für die Aufbereitung großer Datenmengen und deren Strukturierung, etwa zum Zwecke ihrer Bearbeitung auf dem Computer, erweisen sich Matrizen als unentbehrliche Hilfsmittel. Da Matrizen und lineare Abbildungen (siehe Abschnitt 2.2) in engem Zusammenhang stehen, ist in jedem Fall die Linearität der eingehenden Größen wichtig, wie sie für viele Fragestellungen in der Ökonomie ohnehin charakteristisch ist.
Bernd Luderer, Uwe Würker

Kapitel 5. Lineare Optimierung

Zusammenfassung
Die Lineare Optimierung ist ein mathematisches Teilgebiet, in dem es darum geht, aus verschiedenen, typischerweise unendlich vielen zulässigen Varianten die hinsichtlich eines bestimmten Kriteriums beste Variante auszuwählen. Sie wird üblicherweise zur Unternehmensforschung oder Operations Research gerechnet, eine Disziplin, in der es um die Erstellung und Analyse mathematisch-ökonomischer Modelle für die Lösung bestimmter Probleme, vorrangig betriebswirtschaftlicher Natur geht. Ihrem Anliegen nach sind damit die im Rahmen der Linearen Optimierung behandelten Probleme den in der Extremwertrechnung (siehe die Abschnitte 6.3, 8.1 und 8.2) untersuchten Fragestellungen verwandt, aus mathematischer Sicht sind die zur Anwendung kommenden Methoden auf das engste mit dem im Abschnitt 4.4 behandelten Gaußschen Algorithmus zur Lösung linearer Gleichungssysteme verknüpft.
Bernd Luderer, Uwe Würker

Kapitel 6. Differentialrechnung für Funktionen einer Variablen

Zusammenfassung
In diesem Kapitel steht das mathematische Objekt „Funktion“ im Mittelpunkt der Darlegungen. Funktionen einer reellen Veränderlichen gehören zu den wichtigsten Untersuchungs- und Darstellungsmitteln für die Beschreibung und Veranschaulichung ökonomischer Sachverhalte und Zusammenhänge. Der sichere Umgang mit ihnen ist deshalb sowohl für den Wirtschaftswissenschaftler als auch für den Wirtschaftspraktiker unabdingbar. Funktionen sind zentrale Untersuchungsobjekte des mathematischen Teilgebietes Analysis,deren Grundlagen vor ca. 300 Jahren gelegt wurden.
Bernd Luderer, Uwe Würker

Kapitel 7. Funktionen mehrerer Veränderlicher

Zusammenfassung
Während im Kapitel 6 Funktionen einer Variablen betrachtet wurden, sind in diesem Kapitel Funktionen mehrerer Veränderlicher Untersuchungsobjekt. Beide gehören zum „Handwerkszeug“ des Wirtschaftswissenschaftlers.
Bernd Luderer, Uwe Würker

Kapitel 8. Extremwerte von Funktionen mehrerer Veränderlicher

Zusammenfassung
In diesem Abschnitt wird es darum gehen, Funktionen auf ihren größten oder kleinsten Wert zu untersuchen, eine Aufgabenstellung, die bereits für Funktionen einer Variablen von großer Bedeutung war. Häufig werden die unabhängigen Variablen durch weitere Forderungen eingeschränkt, was auf Extremwertprobleme unter Nebenbedingungen führt. Eine der vielleicht bedeutsamsten Anwendungen der Extremwertrechnung ist die Methode der kleinsten Quadrate, die bei Prognose- und Trendrechnungen, bei der Regressionsanalyse in der Statistik und in anderen Bereichen benutzt wird. Ihr ist ein eigener Abschnitt gewidmet. Eine Anzahl von Beispielen demonstriert sowohl mathematische als auch anwendungsorientierte Aspekte der Extremwertrechnung für Funktionen mehrerer Variablen. Eine wichtige generelle Voraussetzung ist die Differenzierbarkeit aller eingehenden Funktionen.
Bernd Luderer, Uwe Würker

Kapitel 9. Integralrechnung

Zusammenfassung
In diesem Kapitel soll vorrangig der Begriff des Integrals eingeführt und erörtert werden; die Entwicklung besonderer Fertigkeiten im Integrieren steht nicht im Vordergrund. Die Integralrechnung dient neben der direkten Beschreibung und Lösung bestimmter wirtschaftswissenschaftlicher Probleme vor allem in der Wahrscheinlichkeitsrechnung und Statistik als Grundlage für eine korrekte Definition solcher Begriffe wie Dichtefunktion, Verteilungsfunktion, Erwartungswert usw.
Bernd Luderer, Uwe Würker

Backmatter

Weitere Informationen