Skip to main content
Erschienen in: Journal of Iron and Steel Research International 1/2022

27.11.2021 | Original Paper

Elastodynamic analysis of synergistic oscillation system driven by double servomotors for continuous casting mold

verfasst von: Da-wei Liu, Chen Lv, Jin-ming Zhang, Xin Jin

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on the principle of speed superposition, the oscillation system for continuous casting mold synchronously driven by double servomotors can adjust all parameters online with high reliability and high bearing capacity. The elastodynamic model of the oscillation system was presented to analyze the oscillation characteristics affected by multiple parameters. Firstly, the working principle of the system was illustrated, with the kinematic model of the system given. Considering the elastic deformation of mechanical components, the lumped parameter method was used to establish the equivalent component and elastodynamic model of the oscillation system. Based on Runge–Kutta method, the oscillation response of the system was calculated. The validity of the elastodynamic model was validated by comparing the simulated solution and experimental data, and the oscillation characteristics of the system were analyzed emphatically with model parameters. The results showed that the first three harmonic frequencies of the eccentric shafts are the main cause of harmonic resonance, which has a strong relationship with the system error. The increase in the fluctuation coefficients and the decrease in the phase difference enhanced the elastic oscillation of the system. System elastic error tends to show linear growth with the increase in the friction force of the slab.
Literatur
[1]
Zurück zum Zitat D.W. Liu, L.M. Luo, G.H. Wang, X. Jin, China Mech. Eng. 28 (2017) 2608–2613. D.W. Liu, L.M. Luo, G.H. Wang, X. Jin, China Mech. Eng. 28 (2017) 2608–2613.
[2]
Zurück zum Zitat X.M. Wu, X.J. Han, Y.Q. Wang, X.K. Li, China Mech. Eng. 12 (2001) 1095–1097. X.M. Wu, X.J. Han, Y.Q. Wang, X.K. Li, China Mech. Eng. 12 (2001) 1095–1097.
[3]
Zurück zum Zitat L.P. Zhang, X.K. Li, H.P. Yang, L.D. Yang, Y.F. Yao, J. Mech. Eng. 45 (2009) 301–306.CrossRef L.P. Zhang, X.K. Li, H.P. Yang, L.D. Yang, Y.F. Yao, J. Mech. Eng. 45 (2009) 301–306.CrossRef
[4]
Zurück zum Zitat Z.H. Tian, L. Tian, Y.H. Zhou, J.H. Xie, A.G. Xie, H.Y. Chen, L.R. Zhou, Y.P. Wang, Y. Luo, in: China International Steel Congress, The Chinese Society for Metals, Shanghai, China, 2004, pp. 623–629. Z.H. Tian, L. Tian, Y.H. Zhou, J.H. Xie, A.G. Xie, H.Y. Chen, L.R. Zhou, Y.P. Wang, Y. Luo, in: China International Steel Congress, The Chinese Society for Metals, Shanghai, China, 2004, pp. 623–629.
[5]
Zurück zum Zitat Y.M. Fang, G.Y. Li, J.X. Li, L. Liu, J. Sci. Instrum. 35 (2014) 2615–2623. Y.M. Fang, G.Y. Li, J.X. Li, L. Liu, J. Sci. Instrum. 35 (2014) 2615–2623.
[6]
[7]
Zurück zum Zitat X.Z. Zhang, X.R. Zheng, Q.G. Liu, X.K. Li, Y.M. Fang, J. Iron Steel Res. Int. 20 (2013) No. 12, 19–24.CrossRef X.Z. Zhang, X.R. Zheng, Q.G. Liu, X.K. Li, Y.M. Fang, J. Iron Steel Res. Int. 20 (2013) No. 12, 19–24.CrossRef
[8]
Zurück zum Zitat C. Zhou, X.Z. Zhang, F. Wang, Y.M. Fang, Metallurgist 63 (2019) 585–597.CrossRef C. Zhou, X.Z. Zhang, F. Wang, Y.M. Fang, Metallurgist 63 (2019) 585–597.CrossRef
[9]
Zurück zum Zitat X.K. Li, D.M. Zhang, Technology of mold oscillation in continuous casting, Metallurgical Industry Press, Beijing, China, 2000. X.K. Li, D.M. Zhang, Technology of mold oscillation in continuous casting, Metallurgical Industry Press, Beijing, China, 2000.
[10]
Zurück zum Zitat X.Z. Zhang, X.K. Li, X.R. Zheng, G.L. Wang, G.Y. Wang, H.C. Li, C.H. Lu, M.S. Yang, J. Mech. Eng. 40 (2004) No. 11, 178–181.CrossRef X.Z. Zhang, X.K. Li, X.R. Zheng, G.L. Wang, G.Y. Wang, H.C. Li, C.H. Lu, M.S. Yang, J. Mech. Eng. 40 (2004) No. 11, 178–181.CrossRef
[11]
Zurück zum Zitat H.P. Yang, X.K. Li, X.R. Zheng, L.D. Yang, China Mech. Eng. 15 (2007) 1790–1794. H.P. Yang, X.K. Li, X.R. Zheng, L.D. Yang, China Mech. Eng. 15 (2007) 1790–1794.
[12]
Zurück zum Zitat H.P. Yang, X.K. Li, X.Z. Zhang, T. Jin, J. Mech. Eng. 43 (2007) No. 7, 207–212.CrossRef H.P. Yang, X.K. Li, X.Z. Zhang, T. Jin, J. Mech. Eng. 43 (2007) No. 7, 207–212.CrossRef
[14]
Zurück zum Zitat L.P. Zhang, J.X. Wang, Q.H. Lu, X.K. Li, X.D. Li, J. Mech. Eng. 47 (2011) No. 19, 91–96.CrossRef L.P. Zhang, J.X. Wang, Q.H. Lu, X.K. Li, X.D. Li, J. Mech. Eng. 47 (2011) No. 19, 91–96.CrossRef
[15]
Zurück zum Zitat L.P. Zhang, X.K. Li, Y.F. Yao, L.D. Yang, Ironmak. Steelmak. 37 (2010) 205–210.CrossRef L.P. Zhang, X.K. Li, Y.F. Yao, L.D. Yang, Ironmak. Steelmak. 37 (2010) 205–210.CrossRef
[16]
Zurück zum Zitat H.Z. Liu, J.P. Wang, D.N. Yuan, F.Z. Chi, R.H. Yan, J. Mech. Eng. 38 (2002) No. 3, 79–82.CrossRef H.Z. Liu, J.P. Wang, D.N. Yuan, F.Z. Chi, R.H. Yan, J. Mech. Eng. 38 (2002) No. 3, 79–82.CrossRef
[17]
Zurück zum Zitat Y.F. Yao, J.X. Li, Y.M. Fang, Chin. J. Mech. Eng. 28 (2015) 1269–1276. Y.F. Yao, J.X. Li, Y.M. Fang, Chin. J. Mech. Eng. 28 (2015) 1269–1276.
[18]
[19]
Zurück zum Zitat X.N. Meng, Y. Cui, Z.S. Lv, X.X. Peng, J. Northeast Univ. 40 (2019) 1273–1278. X.N. Meng, Y. Cui, Z.S. Lv, X.X. Peng, J. Northeast Univ. 40 (2019) 1273–1278.
[20]
Zurück zum Zitat X.Z. Zhang, C. Zhou, P.F. Liu, J. Guan, China Mech. Eng. 27 (2016) 3125–3129. X.Z. Zhang, C. Zhou, P.F. Liu, J. Guan, China Mech. Eng. 27 (2016) 3125–3129.
[21]
Zurück zum Zitat C. Zhou, X.Z. Zhang, P.F. Liu, J. Guan, China Mech. Eng. 29 (2018) 1921–1926. C. Zhou, X.Z. Zhang, P.F. Liu, J. Guan, China Mech. Eng. 29 (2018) 1921–1926.
[22]
Zurück zum Zitat C. Zhou, X.Z. Zhang, F. Wang, P.F. Liu, Y.M. Fang, J. Iron Steel Res. Int. 24 (2017) 251–257.CrossRef C. Zhou, X.Z. Zhang, F. Wang, P.F. Liu, Y.M. Fang, J. Iron Steel Res. Int. 24 (2017) 251–257.CrossRef
[23]
Zurück zum Zitat C. Zhou, X.Z. Zhang, F. Wang, F.Z. Zhang, IEEE Access 8 (2020) 1235–1239.CrossRef C. Zhou, X.Z. Zhang, F. Wang, F.Z. Zhang, IEEE Access 8 (2020) 1235–1239.CrossRef
[24]
Zurück zum Zitat C. Yang, Q.C. Li, Q.H. Chen, Mech. Mach. Theory 156 (2021) 104145. C. Yang, Q.C. Li, Q.H. Chen, Mech. Mach. Theory 156 (2021) 104145.
[25]
Zurück zum Zitat H.N. Sun, S.H. Hou, Q.Z. Li, X.Q. Tang, Aerosp. Sci. Technol. 109 (2021) 106434. H.N. Sun, S.H. Hou, Q.Z. Li, X.Q. Tang, Aerosp. Sci. Technol. 109 (2021) 106434.
[26]
Zurück zum Zitat K. Xu, H.T. Liu, W. Yue, J.L. Xiao, Y.B. Ding, G.F. Wang, Mech. Mach. Theory. 157 (2021) 104214. K. Xu, H.T. Liu, W. Yue, J.L. Xiao, Y.B. Ding, G.F. Wang, Mech. Mach. Theory. 157 (2021) 104214.
[27]
Zurück zum Zitat M. Machado, J. Costa, E. Seabra, P. Flores, Nonlinear Dynam. 69 (2012) 635–654.CrossRef M. Machado, J. Costa, E. Seabra, P. Flores, Nonlinear Dynam. 69 (2012) 635–654.CrossRef
[28]
Zurück zum Zitat L.P. Zhang, in: Proceedings of 2011 International Conference on Electronic and Mechanical Engineering and Information Technology, IEEE, Harbin, China, 2011, pp. 12–14. L.P. Zhang, in: Proceedings of 2011 International Conference on Electronic and Mechanical Engineering and Information Technology, IEEE, Harbin, China, 2011, pp. 12–14.
Metadaten
Titel
Elastodynamic analysis of synergistic oscillation system driven by double servomotors for continuous casting mold
verfasst von
Da-wei Liu
Chen Lv
Jin-ming Zhang
Xin Jin
Publikationsdatum
27.11.2021
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 1/2022
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00684-1

Weitere Artikel der Ausgabe 1/2022

Journal of Iron and Steel Research International 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.