Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

25.08.2016 | Original Article | Ausgabe 7/2018

Neural Computing and Applications 7/2018

Electrical load forecasting based on self-adaptive chaotic neural network using Chebyshev map

Zeitschrift:
Neural Computing and Applications > Ausgabe 7/2018
Autoren:
Yaoyao He, Qifa Xu, Jinhong Wan, Shanlin Yang

Abstract

The importance of electrical load forecasting stems from energy planning and formulating strategies in power system. In this paper, a novel chaotic back-propagation (CBP) neural network algorithm based on the merit of Chebyshev map is proposed. To improve the accuracy of proposed algorithm, self-adaptive gradient correction method is used to eliminate the precocious phenomenon of network. An additional inertial term including chaotic sequence is increased in the process of optimizing the weight value and threshold value of network. The ergodicity of chaotic variables within the range of [−1, 1] can decrease the oscillation trend of network, accelerate the learning speed and overcome the fake saturation problem so as to greatly improve the forecasting ability of proposed algorithm. The simulation results of actual cases indicate that the proposed CBP neural network is advantageous in many respects in comparison with the previous methods studied.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 7/2018

Neural Computing and Applications 7/2018 Zur Ausgabe

Premium Partner

    Bildnachweise