The current study presents a comparison for the electro-oxidation of formic acid (FA), glucose (GL), and methanol (ME) at nickel oxide nanoparticles (NiOx) modified electrodes. The modification with NiOx was pursed onto a bare glassy carbon (GC) and Pt-modified (Pt/GC) electrodes electrochemically, and the catalytic activity was measured in 0.3 M NaOH. Cyclic voltammetry (CV), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) are all used to provide a concrete characterization of the prepared electrodes. A catalytic enhancement of GL oxidation (GLO) and ME oxidation (MEO) was observed at the NiOx-modified GC (NiOx/GC) electrode, while the same electrode did not show any activity towards FA oxidation (FAO), revealing that FAO is substrate dependent. On the other hand, assembling NiOx onto the Pt/GC electrode assisted in improving the catalytic activity of all reactions (GLO, MEO, and FAO). The catalytic enhancement observed at the NiOx/Pt/GC electrode for GLO, MEO, and FAO was not only confined in the large increase of the oxidation current but also in a negative shift in the onset potential of the oxidation reaction. We believe NiOx could successfully play an essential role in this catalytic enhancement, presumably via participation in these reactions in a way facilitating the charge transfer or providing the oxygen atmosphere necessary for promoting an oxidative removal for unwanted poisoning species.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853
CrossRef
2.
Basu D, Basu S (2012) Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. Int J Hydrogen Energy 37:4678–4684
CrossRef
3.
El-Nagar GA, Mohammad AM, El-Deab MS, El-Anadouli BE (2013) Electrocatalysis by design: enhanced electrooxidation of formic acid at platinum nanoparticles–nickel oxide nanoparticles binary catalysts. Electrochim Acta 94:62–71
CrossRef
4.
Freitas RG, Antunes EP, Pereira EC (2009) CO and methanol electrooxidation on Pt/Ir/Pt multilayers electrodes. Electrochim Acta 54:1999–2003
CrossRef
5.
Miki A, Ye S, Senzaki T, Osawa M (2004) Surface-enhanced infrared study of catalytic electrooxidation of formaldehyde, methyl formate, and dimethoxymethane on platinum electrodes in acidic solution. J Electroanal Chem 563:23–31
CrossRef
6.
Beden B, Léger J-M, Lamy C (1992) Electrocatalytic oxidation of oxygenated aliphatic organic compounds at noble metal electrodes. In: Bockris JOM, Conway BE, White R (eds) Modern aspects of electrochemistry. Springer, Philadelphia, pp 97–264
7.
Iwasita T, Nart FC, Lopez B, Vielstich W (1992) On the study of adsorbed species at platinum from methanol, formic acid and reduced carbon dioxide via in situ FT-ir spectroscopy. Electrochim Acta 37:2361–2367
CrossRef
8.
Radmilovic V, Gasteiger HA, Ross PN (1995) Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation. J Catal 154:98–106
CrossRef
9.
Zhang H, Wang Y, Fachini ER, Cabrera CR (1999) Electrochemically codeposited platinum/molybdenum oxide electrode for catalytic oxidation of methanol in acid solution. Electrochem Solid-State Lett 2:437–439
CrossRef
10.
Huang J, Yang H, Huang Q, Tang Y, Lu T, Akins DL (2004) Methanol oxidation on carbon-supported Pt-Os bimetallic nanoparticle electrocatalysts. J Electrochem Soc 151:A1810–A1815
CrossRef
11.
Gurau B, Viswanathan R, Liu R, Lafrenz TJ, Ley KL, Smotkin ES et al (1998) Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation 1. J Phys Chem B 102:9997–10003
CrossRef
12.
Sadiek IM, Mohammad AM, El-Shakre ME, El-Deab MS (2012) Electrocatalytic activity of nickel oxide nanoparticles-modified electrodes: optimization of the loading level and operating pH towards the oxygen evolution reaction. Int J Hydrogen Energy 37:68–77
CrossRef
13.
Trasatti S, Petrii OA (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327:353–376
CrossRef
14.
El-Deab MS (2010) Electrocatalysis by nanoparticles: oxidation of formic acid at manganese oxide nanorods-modified Pt planar and nanohole-arrays. J Adv Res 1:87–93
CrossRef
15.
El-Refaei SM, Awad MI, El-Anadouli BE, Saleh MM (2013) Electrocatalytic glucose oxidation at binary catalyst of nickel and manganese oxides nanoparticles modified glassy carbon electrode: optimization of the loading level and order of deposition. Electrochim Acta 92:460–467
CrossRef
16.
El-Nagar GA, Mohammad AM, El-Deab MS, El-Anadouli BE (2012) Facilitated electro-oxidation of formic acid at nickel oxide nanoparticles modified electrodes. J Electrochem Soc 159:F249–F254
CrossRef
17.
Fleischmann M, Korinek K, Pletcher D (1971) The oxidation of organic compounds at a nickel anode in alkaline solution. J Electroanal Chem Interfacial Electrochem 31:39–49
CrossRef
18.
Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani MG (2009) Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode. J Solid State Electrochem 13:1171–1179
CrossRef
19.
El-Shafei AA (1999) Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium. J Electroanal Chem 471:89–95
CrossRef
20.
Masud J, Alam MT, Miah MR, Okajima T, Ohsaka T (2011) Enhanced electrooxidation of formic acid at Ta
2O
5-modified Pt electrode. Electrochem Commun 13:86–89
CrossRef
21.
Habibi B, Delnavaz N (2011) Carbon–ceramic supported bimetallic Pt–Ni nanoparticles as an electrocatalyst for oxidation of formic acid. Int J Hydrog Energy 36:9581–9590
CrossRef
22.
Basu D, Basu S (2011) Synthesis and characterization of Pt–Au/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell. Int J Hydrog Energy 36:14923–14929
CrossRef
23.
Wang J, Shi R, Guo X, Xi J, Zhao J, Song C et al (2014) Highly active Pt-on-Au catalysts for methanol oxidation in alkaline media involving a synergistic interaction between Pt and Au. Electrochim Acta 123:309–316
CrossRef
24.
Masud J, Alam MT, Awaludin Z, El-Deab MS, Okajima T, Ohsaka T (2012) Electrocatalytic oxidation of methanol at tantalum oxide-modified Pt electrodes. J Power Sources 220:399–404
CrossRef
25.
Fu X-Z, Liang Y, Chen S-P, Lin J-D, Liao D-W (2009) Pt-rich shell coated Ni nanoparticles as catalysts for methanol electro-oxidation in alkaline media. Catal Commun 10:1893–1897
CrossRef
26.
Xiong L, Yang X, Xu M, Xu Y, Wu D (2013) Pt–Ni alloy nanoparticles supported on multiwalled carbon nanotubes for methanol oxidation in alkaline media. J Solid State Electrochem 17:805–810
CrossRef
Über dieses Kapitel
Titel
Electro-Oxidation of Formic Acid, Glucose, and Methanol at Nickel Oxide Nanoparticle Modified Platinum Electrodes
Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.
Die Entwicklung des mitteleuropäischen Energiesystems und insbesondere die Weiterentwicklung der Energieinfrastruktur sind konfrontiert mit einer stetig steigenden Diversität an Herausforderungen, aber auch mit einer zunehmenden Komplexität in den Lösungsoptionen. Vor diesem Hintergrund steht die Weiterentwicklung von Hybridnetzen symbolisch für das ganze sich in einer Umbruchsphase befindliche Energiesystem: denn der Notwendigkeit einer Schaffung und Bildung der Hybridnetze aus systemischer und volkswirtschaftlicher Perspektive steht sozusagen eine Komplexitätsfalle gegenüber, mit der die Branche in der Vergangenheit in dieser Intensität nicht konfrontiert war. Jetzt gratis downloaden!