Skip to main content
Erschienen in:

08.02.2024

Electrocardiogram Denoising Based on SWT and WATV Using ANNs

verfasst von: Abdallah Rezgui, Brahim Nasraoui, Mourad Talbi

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper introduces an innovative electrocardiogram (\({\text{ECG}}\)) denoising technique based on stationary wavelet transform (\(SWT)\) and wavelet/total variation (WATV). In this technique, we also use two different artificial neural networks (\(ANNs\)) to determine two ideal thresholds, \(thr_{1}\) and \(thr_{2}\). The latter is used for the soft thresholding of a noisy details coefficient, \(cdb_{2}\), to obtain a denoised coefficient, \(cdd_{2}\). The threshold \(thr_{1}\) is used for the soft thresholding of a noisy details coefficient, \(cdb_{1}\), yielding a denoised coefficient, \(cdd_{1} .{ }\) The coefficient \(cdb_{1}\) and a noisy approximation coefficient, \(cab_{1}\), are obtained by applying \(SWT\) to the noisy ECG signal. The coefficient \(cdb_{2}\) and another noisy approximation coefficient, \(cab_{2}\), are obtained by applying \(SWT\) to \(cab_{1}\). In this proposed ECG denoising system, we also apply a WATV-based denoising technique to \(cab_{2}\) to obtain a denoised approximation coefficient, \(cad_{2}\). This WATV-based denoising technique requires the estimation of the level of the noise corrupting the clean ECG signal. This noise is additive Gaussian white noise (AGWN) and its level is denoted as \(\sigma\), which is estimated from \(cdb_{1}\). After that, the inverse of \(SWT\) (\(SWT^{ - 1}\)) is applied to \(cdd_{2}\) and \(cad_{2}\) to obtain a denoised approximation coefficient, \(cad_{1}\). Subsequently, we apply \(SWT^{ - 1}\) to \(cdd_{1}\) and \(cad_{1}\) to finally obtain the denoised ECG signal. The performance of this proposed ECG denoising technique is proven by the results obtained after computing the signal-to-noise ratio (\(SNR\)), the peak SNR (\(PSNR\)), the mean square error (\(MSE\)), the mean absolute error (\(MAE\)) and the cross-correlation (\(CC\)).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat V. Afonso, W. Tompkins, T. Nguyen, S. Trautmann, S. Luo, Filter bank-based processing of the stress ECG, in Proceedings of the IEEE 17th Annual Conference on Engineering in Medicine and Biology Society, vol. 2, pp. 887–888, Montreal, QC, Canada, 1995. V. Afonso, W. Tompkins, T. Nguyen, S. Trautmann, S. Luo, Filter bank-based processing of the stress ECG, in Proceedings of the IEEE 17th Annual Conference on Engineering in Medicine and Biology Society, vol. 2, pp. 887–888, Montreal, QC, Canada, 1995.
2.
Zurück zum Zitat M.A. Awal, S.S. Mostafa, M. Ahmad, M.A. Rashid, An adaptive level dependent wavelet thresholding for ECG denoising. Biocybernet. Biomed. Eng. 34(4), 238–249 (2014)CrossRef M.A. Awal, S.S. Mostafa, M. Ahmad, M.A. Rashid, An adaptive level dependent wavelet thresholding for ECG denoising. Biocybernet. Biomed. Eng. 34(4), 238–249 (2014)CrossRef
3.
Zurück zum Zitat M. Bandarabadi, M. Karami-Mollaei, A. Afzalian, J. Ghasemi, ECG denoising using singular value decomposition. Aust. J. Basic Appl. Sci. 4(7), 2109–2113 (2010) M. Bandarabadi, M. Karami-Mollaei, A. Afzalian, J. Ghasemi, ECG denoising using singular value decomposition. Aust. J. Basic Appl. Sci. 4(7), 2109–2113 (2010)
4.
Zurück zum Zitat P.R.B. Barbosa, J. Barbosa-Filho, C.A.M. de Sa, E.C. Barbosa, J. Nadal, Reduction of electromyographic noise in the signal-averaged electrocardiogram by spectral decomposition. IEEE Trans. Biomed. Eng. 50(1), 114–117 (2003)CrossRef P.R.B. Barbosa, J. Barbosa-Filho, C.A.M. de Sa, E.C. Barbosa, J. Nadal, Reduction of electromyographic noise in the signal-averaged electrocardiogram by spectral decomposition. IEEE Trans. Biomed. Eng. 50(1), 114–117 (2003)CrossRef
5.
Zurück zum Zitat P. Bonizzi, J. Karel, S. Zeemering, R. Peeters, Sleep apnea detection directly from unprocessed ECG through singular spectrum decomposition, in 2015 Computing in Cardiology Conference (CinC), pp. 309–312, Nice, France, 2015. P. Bonizzi, J. Karel, S. Zeemering, R. Peeters, Sleep apnea detection directly from unprocessed ECG through singular spectrum decomposition, in 2015 Computing in Cardiology Conference (CinC), pp. 309–312, Nice, France, 2015.
6.
Zurück zum Zitat K. Chang, Ensemble empirical mode decomposition based ECG noise filtering method, in 2010 International Conference on Machine Learning and Cybernetics, pp. 210–213, Qingdao, China, 2010 K. Chang, Ensemble empirical mode decomposition based ECG noise filtering method, in 2010 International Conference on Machine Learning and Cybernetics, pp. 210–213, Qingdao, China, 2010
7.
Zurück zum Zitat G.H. Choi, J.H. Jung, H.M. Moon, Y.T. Kim, S.B. Pan, User authentication system based on baseline-corrected ECG for biometrics. Intell. Autom. Soft Comput. 25(1), 193–204 (2019) G.H. Choi, J.H. Jung, H.M. Moon, Y.T. Kim, S.B. Pan, User authentication system based on baseline-corrected ECG for biometrics. Intell. Autom. Soft Comput. 25(1), 193–204 (2019)
8.
Zurück zum Zitat N. Dey, T.P. Dash, S. Dash, ECG signal denoising by functional link artificial neural network (FLANN). Int. J. Biomed. Eng. Technol. 7(4), 377–389 (2011)CrossRef N. Dey, T.P. Dash, S. Dash, ECG signal denoising by functional link artificial neural network (FLANN). Int. J. Biomed. Eng. Technol. 7(4), 377–389 (2011)CrossRef
9.
Zurück zum Zitat Y. Ding, I. Selesnick, Artifact-free wavelet denoising: non-convex sparse regularization, in convex optimization. IEEE Signal Process. Lett. 22(9), 1364–1368 (2015)CrossRef Y. Ding, I. Selesnick, Artifact-free wavelet denoising: non-convex sparse regularization, in convex optimization. IEEE Signal Process. Lett. 22(9), 1364–1368 (2015)CrossRef
10.
Zurück zum Zitat D.L. Donoho, I.M. Johnstone, Threshold selection for wavelet shrinkage of noisy data, in Proceedings of the 16th Annual Conference of the IEEE Engineering in Medicine and biology society, Maryland, USA, 1994, pp. 24a–25a D.L. Donoho, I.M. Johnstone, Threshold selection for wavelet shrinkage of noisy data, in Proceedings of the 16th Annual Conference of the IEEE Engineering in Medicine and biology society, Maryland, USA, 1994, pp. 24a–25a
12.
Zurück zum Zitat D.L. Donoho, I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)MathSciNetCrossRef D.L. Donoho, I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)MathSciNetCrossRef
13.
Zurück zum Zitat I. Hermawan, A. Y. Husodo, W. Jatmiko, B. Wiweko, A. Boediman, B. K. Pradekso, Denoising noisy ECG signal based on adaptive Fourier decomposition, in 2018 3rd International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), pp. 11–14, Depok, Indonesia, 2018. I. Hermawan, A. Y. Husodo, W. Jatmiko, B. Wiweko, A. Boediman, B. K. Pradekso, Denoising noisy ECG signal based on adaptive Fourier decomposition, in 2018 3rd International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), pp. 11–14, Depok, Indonesia, 2018.
14.
Zurück zum Zitat M. Kang, B. Vidakovic. WavmatND: A MATLAB Package for Non-Decimated Wavelet Transform and its Applications. arXiv:1604.07098v1 [stat.AP] 24 Apr 2016. M. Kang, B. Vidakovic. WavmatND: A MATLAB Package for Non-Decimated Wavelet Transform and its Applications. arXiv:​1604.​07098v1 [stat.AP] 24 Apr 2016.
15.
Zurück zum Zitat K. Li, W. Pan, Y. Li, Q. Jiang, G. Liu, A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal. Neurocomputing 294, 94–101 (2018)CrossRef K. Li, W. Pan, Y. Li, Q. Jiang, G. Liu, A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal. Neurocomputing 294, 94–101 (2018)CrossRef
16.
Zurück zum Zitat Y. Li, Y. Pang, J. Wang, X. Li, Patient-specific ECG classification by deeper CNN from generic to dedicated. Neurocomputing 314, 336–346 (2018)CrossRef Y. Li, Y. Pang, J. Wang, X. Li, Patient-specific ECG classification by deeper CNN from generic to dedicated. Neurocomputing 314, 336–346 (2018)CrossRef
17.
Zurück zum Zitat X. Liu, Y. Si, D. Wang, LSTM neural network for beat classification in ECG identity recognition. Intell. Autom. Soft Comput. 26(2), 341–351 (2020) X. Liu, Y. Si, D. Wang, LSTM neural network for beat classification in ECG identity recognition. Intell. Autom. Soft Comput. 26(2), 341–351 (2020)
18.
Zurück zum Zitat Y. Liu, Y. Li, H. Lin, H. Ma, An amplitude-preserved time–frequency peak filtering based on empirical mode decomposition for seismic random noise reduction. IEEE Geosci. Remote Sens. Lett. 11(5), 896–900 (2014)CrossRef Y. Liu, Y. Li, H. Lin, H. Ma, An amplitude-preserved time–frequency peak filtering based on empirical mode decomposition for seismic random noise reduction. IEEE Geosci. Remote Sens. Lett. 11(5), 896–900 (2014)CrossRef
19.
Zurück zum Zitat C.A. Medina, A. Alcaim, J.A. Apolinario, wavelet denoising of speech using neural networks for threshold selection. Electron. Lett. 39(25), 1869–1871 (2003)CrossRef C.A. Medina, A. Alcaim, J.A. Apolinario, wavelet denoising of speech using neural networks for threshold selection. Electron. Lett. 39(25), 1869–1871 (2003)CrossRef
20.
Zurück zum Zitat K. Naveed, M. Tahir Akhtar, M. Faisal Siddiqui, N. Rehman, A statistical approach to signal denoising based on data-driven multiscale representation. Digital Signal Process. 108, 102896 (2021)CrossRef K. Naveed, M. Tahir Akhtar, M. Faisal Siddiqui, N. Rehman, A statistical approach to signal denoising based on data-driven multiscale representation. Digital Signal Process. 108, 102896 (2021)CrossRef
21.
Zurück zum Zitat P. Nguyen, J.M. Kim, Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition (Elsevier Science Inc., Amsterdam, 2016)CrossRef P. Nguyen, J.M. Kim, Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition (Elsevier Science Inc., Amsterdam, 2016)CrossRef
22.
Zurück zum Zitat N. Nikolaev, Z. Nikolov, A. Gotchev, K. Egiazarian, Wavelet domain Wiener filtering for ECG denoising using improved signal estimate, in 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), pp. 3578–3581, Istanbul, Turkey, June 2000. N. Nikolaev, Z. Nikolov, A. Gotchev, K. Egiazarian, Wavelet domain Wiener filtering for ECG denoising using improved signal estimate, in 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), pp. 3578–3581, Istanbul, Turkey, June 2000.
23.
Zurück zum Zitat S. Poornachandra, Wavelet-based denoising using subband dependent threshold for ECG signals, in Digital Signal Processing, New York, 2008. S. Poornachandra, Wavelet-based denoising using subband dependent threshold for ECG signals, in Digital Signal Processing, New York, 2008.
24.
Zurück zum Zitat S. Poungponsri, X. Yu, Electrocardiogram (ECG) signal modeling and noise reduction using wavelet neural networks, in 2009 IEEE International Conference on Automation and Logistics, pp. 394–398, Shenyang, China, 2009. S. Poungponsri, X. Yu, Electrocardiogram (ECG) signal modeling and noise reduction using wavelet neural networks, in 2009 IEEE International Conference on Automation and Logistics, pp. 394–398, Shenyang, China, 2009.
25.
Zurück zum Zitat R. Sameni, M.B. Shamsollahi, C. Jutten, G.D. Clifford, A nonlinear Bayesian filtering framework for ECG denoising. IEEE Trans. Biomed. Eng. 54(12), 2172–2185 (2007)CrossRef R. Sameni, M.B. Shamsollahi, C. Jutten, G.D. Clifford, A nonlinear Bayesian filtering framework for ECG denoising. IEEE Trans. Biomed. Eng. 54(12), 2172–2185 (2007)CrossRef
26.
Zurück zum Zitat P. M. Shemi, E. M. Shareena, Analysis of ECG signal denoising using discrete wavelet transform, in 2016 IEEE International Conference on Engineering and Technology (ICETECH), pp. 713–718, Coimbatore, India, 2016. P. M. Shemi, E. M. Shareena, Analysis of ECG signal denoising using discrete wavelet transform, in 2016 IEEE International Conference on Engineering and Technology (ICETECH), pp. 713–718, Coimbatore, India, 2016.
27.
Zurück zum Zitat M. Talbi, M.S. Bouhlel, A novel technique of noise cancellation based on stationary bionic wavelet transform and WATV: Application for ECG denoising. Int. Arab J. Inf. Technol. 19(3), 381–387 (2022) M. Talbi, M.S. Bouhlel, A novel technique of noise cancellation based on stationary bionic wavelet transform and WATV: Application for ECG denoising. Int. Arab J. Inf. Technol. 19(3), 381–387 (2022)
28.
Zurück zum Zitat Z. Wang, C. M. Wong, J. N. daCruz et al., Muscle and electrode motion artifacts reduction in ECG using adaptive Fourier decomposition, in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1456–1461, San Diego, CA, USA, 2014. Z. Wang, C. M. Wong, J. N. daCruz et al., Muscle and electrode motion artifacts reduction in ECG using adaptive Fourier decomposition, in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1456–1461, San Diego, CA, USA, 2014.
29.
Zurück zum Zitat P. Xiong, H. Wang, M. Liu, S. Zhou, Z. Hou, X. Liu, ECG signal enhancement based on improved denoising autoencoder. Eng. Appl. Artif. Intell. 52, 194–202 (2016)CrossRef P. Xiong, H. Wang, M. Liu, S. Zhou, Z. Hou, X. Liu, ECG signal enhancement based on improved denoising autoencoder. Eng. Appl. Artif. Intell. 52, 194–202 (2016)CrossRef
31.
Zurück zum Zitat Q. Zhang, Artificial intelligence-enabled ECG big data mining for pervasive heart health monitoring (Springer, Berlin, 2020)CrossRef Q. Zhang, Artificial intelligence-enabled ECG big data mining for pervasive heart health monitoring (Springer, Berlin, 2020)CrossRef
Metadaten
Titel
Electrocardiogram Denoising Based on SWT and WATV Using ANNs
verfasst von
Abdallah Rezgui
Brahim Nasraoui
Mourad Talbi
Publikationsdatum
08.02.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 5/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-023-02590-1