Skip to main content
Erschienen in: Journal of Materials Science 13/2017

03.04.2017 | Energy materials

Electrocatalytic applications of platinum-decorated TiO2 nanotubes prepared by a fully wet-chemical synthesis

verfasst von: Markus Antoni, Falk Muench, Ulrike Kunz, Joachim Brötz, Wolfgang Donner, Wolfgang Ensinger

Erschienen in: Journal of Materials Science | Ausgabe 13/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pt-decorated \(\hbox {TiO}_{2}\) nanotubes Pt@TiO2 are prepared only by applying a set of facile wet-chemical redox reactions to ion track-etched polycarbonate templates. First, a homogeneous layer of Pt nanoparticles is deposited onto the complex template surface by reducing potassium tetrachloroplatinate with absorbed dimethylaminoborane. Second, the template is coated with a conformal \(\hbox {TiO}_{2}\) layer, using a chemical bath deposition reaction based on titanium(III) chloride. After the removal of the template, the rutile-type \(\hbox {TiO}_{2}\) nanotubes remain decorated with Pt nanoparticles and nanoparticle-clusters on their outside. During the process, neither vacuum techniques nor external current sources or addition of heat are employed. The crystallinity, composition, and morphology of the composite nanotubes are analysed by X-ray diffraction, scanning and transmission electron microscopy as well as by energy-dispersive X-ray spectroscopy. Finally, the obtained materials are examplarily applied in the electrooxidation of ethanol and formic acid, and their performances have been evaluated. Compared to conventional carbon black-supported Pt nanoparticles, the Pt@TiO2 nanotubes show higher reaction rates. Mass activities of 2.36 \(\hbox {A}\hbox { mg}_{\rm Pt}^{-1}\hbox { cm}^{-2}\) are reached in ethanol oxidation and 7.56 \(\hbox {A}\hbox { mg}_{\rm Pt}^{-1}\hbox { cm}^{-2}\) in the formic acid oxidation. The present structures are able to exploit the synergy of Pt and \(\hbox {TiO}_{2}\) with a bifunctional mechanism to result in powerful but easy-to-fabricate catalyst structures. They represent an easily producible type of composite nanostructures which can be applied in various fields such as in catalytics and sensor technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Huang X-J, Choi Y-K (2007) Chemical sensors based on nanostructured materials. Sens Actuators B 122:659–671CrossRef Huang X-J, Choi Y-K (2007) Chemical sensors based on nanostructured materials. Sens Actuators B 122:659–671CrossRef
2.
Zurück zum Zitat Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B 121:18–35CrossRef Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B 121:18–35CrossRef
3.
Zurück zum Zitat Zhu C, Yang G, Li H, Dan D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249CrossRef Zhu C, Yang G, Li H, Dan D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249CrossRef
4.
Zurück zum Zitat Lucia U (2014) Overview on fuel cells. Renew Sustain Energy Rev 30:164–169CrossRef Lucia U (2014) Overview on fuel cells. Renew Sustain Energy Rev 30:164–169CrossRef
5.
Zurück zum Zitat Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853CrossRef Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853CrossRef
6.
Zurück zum Zitat Qiu J-D, Wang G-C, Liang R-P, Xia X-H, Hong-Wen Y (2011) Controllable deposition of platinum nanoparticles on graphene as and electrocatalyst for direct methanol fuel cells. J Phys Chem C 115:15639–15645CrossRef Qiu J-D, Wang G-C, Liang R-P, Xia X-H, Hong-Wen Y (2011) Controllable deposition of platinum nanoparticles on graphene as and electrocatalyst for direct methanol fuel cells. J Phys Chem C 115:15639–15645CrossRef
7.
Zurück zum Zitat Zhang C, Hongmei Y, Li F, Xiao Y, Gao Y, Li Y, Zeng Y, Jia J, Yi B, Shao Z (2015) An oriented ultrathin catalyst layer derived from high conductive TiO\(_{2}\) nanotube for polymer electrolyte membrane fuel cell. Electrochim Acta 153:361–369CrossRef Zhang C, Hongmei Y, Li F, Xiao Y, Gao Y, Li Y, Zeng Y, Jia J, Yi B, Shao Z (2015) An oriented ultrathin catalyst layer derived from high conductive TiO\(_{2}\) nanotube for polymer electrolyte membrane fuel cell. Electrochim Acta 153:361–369CrossRef
8.
Zurück zum Zitat Clark JH (2016) Green and sustainable chemistry: an introduction. In: Green and sustainable medicinal chemistry: methods, tools and strategies for the 21st century pharameceutical industry, number 46 in RSC Green Chemistry. The Royal Society of Chemistry, Cambridge Clark JH (2016) Green and sustainable chemistry: an introduction. In: Green and sustainable medicinal chemistry: methods, tools and strategies for the 21st century pharameceutical industry, number 46 in RSC Green Chemistry. The Royal Society of Chemistry, Cambridge
9.
Zurück zum Zitat Chow J, Kopp RJ, Portney PR (2003) Energy resources and global development. Science 302(5650):1528–1531CrossRef Chow J, Kopp RJ, Portney PR (2003) Energy resources and global development. Science 302(5650):1528–1531CrossRef
10.
Zurück zum Zitat Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189CrossRef Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189CrossRef
11.
Zurück zum Zitat Pagliaro M, Konstandopoulos AG, Ciriminna R, Palmisano G (2010) Solar hydrogen: fuel of the near future. Energy Environ Sci 3:279–287CrossRef Pagliaro M, Konstandopoulos AG, Ciriminna R, Palmisano G (2010) Solar hydrogen: fuel of the near future. Energy Environ Sci 3:279–287CrossRef
12.
Zurück zum Zitat Zhang S, Shao Y, Yin G, Lin Y (2013) Recent progress in nanostructured electrocatalyst PEM fuel cells. J Mater Chem A 1:4631–4641CrossRef Zhang S, Shao Y, Yin G, Lin Y (2013) Recent progress in nanostructured electrocatalyst PEM fuel cells. J Mater Chem A 1:4631–4641CrossRef
13.
Zurück zum Zitat An L, Chen R (2016) Direct formate fuel cells: a review. J Power Sources 320:127–139CrossRef An L, Chen R (2016) Direct formate fuel cells: a review. J Power Sources 320:127–139CrossRef
14.
Zurück zum Zitat Changwei X, Shen P, Liu Y (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164:527–531CrossRef Changwei X, Shen P, Liu Y (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164:527–531CrossRef
15.
Zurück zum Zitat Yan Qiao and Chang Ming Li (2011) Nanostructured catalysts in fuel cells. J Mater Chem 21:4027–4036CrossRef Yan Qiao and Chang Ming Li (2011) Nanostructured catalysts in fuel cells. J Mater Chem 21:4027–4036CrossRef
16.
Zurück zum Zitat Rasmi KR, Vanithakumari SC, George RP, Mallika C, Kamachi Mudali U (2015) Nanoparticles of Pt loaded on a vertically aligned TiO\(_{2}\) nanotube bed. RSC Adv 5:108050–108057CrossRef Rasmi KR, Vanithakumari SC, George RP, Mallika C, Kamachi Mudali U (2015) Nanoparticles of Pt loaded on a vertically aligned TiO\(_{2}\) nanotube bed. RSC Adv 5:108050–108057CrossRef
17.
Zurück zum Zitat Zhou W, Zhou Z, Song S, Li W, Sun G, Tsiakaras P, Xin Q (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B 46:273–285CrossRef Zhou W, Zhou Z, Song S, Li W, Sun G, Tsiakaras P, Xin Q (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B 46:273–285CrossRef
18.
Zurück zum Zitat Beyhan S, Coutanceau C, Léger J-M, Napporn TW, Kadirgan F (2013) Promising anode candidates for direct ethanol fuel cell: carbon supported PtSn-based trimetallic catalysts prepared by Bönnemann method. Int J Hydrogen Energy 38:6830–6841CrossRef Beyhan S, Coutanceau C, Léger J-M, Napporn TW, Kadirgan F (2013) Promising anode candidates for direct ethanol fuel cell: carbon supported PtSn-based trimetallic catalysts prepared by Bönnemann method. Int J Hydrogen Energy 38:6830–6841CrossRef
19.
Zurück zum Zitat Tayal J, Rawat B, Basu S (2012) Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell. Int J Hydrogen Energy 37:4597–4605CrossRef Tayal J, Rawat B, Basu S (2012) Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell. Int J Hydrogen Energy 37:4597–4605CrossRef
20.
Zurück zum Zitat Akhairi MAF, Kamarudin SK (2016) Catalysts in direct ethanol fuel cell (DEFC): an overview. Int J Hydrogen Energy 41:4214–4226CrossRef Akhairi MAF, Kamarudin SK (2016) Catalysts in direct ethanol fuel cell (DEFC): an overview. Int J Hydrogen Energy 41:4214–4226CrossRef
21.
Zurück zum Zitat Hou J, Shao Y, Ellis MW, Moore RB, Yi B (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13:15384–15402CrossRef Hou J, Shao Y, Ellis MW, Moore RB, Yi B (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13:15384–15402CrossRef
22.
Zurück zum Zitat Han M, Li M, Xin W, Zeng J, Liao S (2015) Highly stable and active Pt electrocatalyst on TiO\(_{2}\)-CoO4-C composite support for polymer exchange membrane fuel cells. Electrochim Acta 154:266–272CrossRef Han M, Li M, Xin W, Zeng J, Liao S (2015) Highly stable and active Pt electrocatalyst on TiO\(_{2}\)-CoO4-C composite support for polymer exchange membrane fuel cells. Electrochim Acta 154:266–272CrossRef
23.
Zurück zum Zitat Sui X-L, Wang Z-B, Li C-Z, Zhang J-J, Zhao L, Da-Ming G (2014) Effect of pH value on H\(_{2}\)Ti\(_{2}\)O\(_{5}\)/TiO\(_{2}\) composite nanotubes as pt catalyst support for methanol oxidation. J Power Sources 272:196–202CrossRef Sui X-L, Wang Z-B, Li C-Z, Zhang J-J, Zhao L, Da-Ming G (2014) Effect of pH value on H\(_{2}\)Ti\(_{2}\)O\(_{5}\)/TiO\(_{2}\) composite nanotubes as pt catalyst support for methanol oxidation. J Power Sources 272:196–202CrossRef
24.
Zurück zum Zitat Lei D, Shao Y, Sun J, Yin G, Liu J, Wang Y (2016) Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy 29:314–322CrossRef Lei D, Shao Y, Sun J, Yin G, Liu J, Wang Y (2016) Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy 29:314–322CrossRef
25.
Zurück zum Zitat Eberle U, Müller B, von Helmolt R (2012) Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy Environ Sci 5:8780–8798CrossRef Eberle U, Müller B, von Helmolt R (2012) Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy Environ Sci 5:8780–8798CrossRef
26.
Zurück zum Zitat Zhao L, Wang Z-B, Liu J, Zhang J-J, Sui X-L, Zhang L-M, Da-Ming G (2015) Facile one-pot synthesis of Pt/graphene-TiO\(_{2}\) hybrid catalyst with enhanced methanol electrooxidation performance. J Power Sources 279:210–217CrossRef Zhao L, Wang Z-B, Liu J, Zhang J-J, Sui X-L, Zhang L-M, Da-Ming G (2015) Facile one-pot synthesis of Pt/graphene-TiO\(_{2}\) hybrid catalyst with enhanced methanol electrooxidation performance. J Power Sources 279:210–217CrossRef
27.
Zurück zum Zitat Liu J, Liu B, Ni Z, Deng Y, Zhong C, Wenbin H (2014) Improved catalytic performance of Pt/TiO\(_{2}\) nanotubes electrode for ammonia oxidation under UV-light illumination. Electrochim Acta 150:146–150CrossRef Liu J, Liu B, Ni Z, Deng Y, Zhong C, Wenbin H (2014) Improved catalytic performance of Pt/TiO\(_{2}\) nanotubes electrode for ammonia oxidation under UV-light illumination. Electrochim Acta 150:146–150CrossRef
28.
Zurück zum Zitat Liu R, Sen A (2012) Controlled synthesis of heterogeneous metal–titania nanostructures and their applications. J Am Chem Soc 134(42):17505–17512CrossRef Liu R, Sen A (2012) Controlled synthesis of heterogeneous metal–titania nanostructures and their applications. J Am Chem Soc 134(42):17505–17512CrossRef
29.
Zurück zum Zitat Boehme M, Ensinger W (2011) Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photoctalytic degradation of methylene-blue. Nano-Micro Lett 3(4):236–241CrossRef Boehme M, Ensinger W (2011) Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photoctalytic degradation of methylene-blue. Nano-Micro Lett 3(4):236–241CrossRef
30.
Zurück zum Zitat Qiao P, Zou S, Shaodan X, Liu J, Li Y, Ma G, Xiao L, Lou H, Fan J (2014) A general synthesis strategy of multi-metallic nanoparticles within mesoporous titania via in situ photo-deposition. J Mater Chem 2:17321–17328CrossRef Qiao P, Zou S, Shaodan X, Liu J, Li Y, Ma G, Xiao L, Lou H, Fan J (2014) A general synthesis strategy of multi-metallic nanoparticles within mesoporous titania via in situ photo-deposition. J Mater Chem 2:17321–17328CrossRef
31.
Zurück zum Zitat Cohen JL, Volpe DJ, Abruña HD (2007) Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys Chem Chem Phys 9:49–77CrossRef Cohen JL, Volpe DJ, Abruña HD (2007) Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys Chem Chem Phys 9:49–77CrossRef
32.
Zurück zum Zitat Muench F, Felix E-M, Rauber M, Schaefer S, Antoni M, Kunz U, Kleebe H-J, Trautmann C, Ensinger W (2016) Electrodeposition and electroless plating of hierarchical metal superstructures composed of 1d nano- and microscale building blocks. Electrochim Acta 202:47–54CrossRef Muench F, Felix E-M, Rauber M, Schaefer S, Antoni M, Kunz U, Kleebe H-J, Trautmann C, Ensinger W (2016) Electrodeposition and electroless plating of hierarchical metal superstructures composed of 1d nano- and microscale building blocks. Electrochim Acta 202:47–54CrossRef
33.
Zurück zum Zitat Tian M, Guosheng W, Chen A (2012) Unique electrochemical catalytic behaviour of Pt nanoparticles deposited on TiO\(_{2}\) nanotubes. ACS Catal 2:425–432CrossRef Tian M, Guosheng W, Chen A (2012) Unique electrochemical catalytic behaviour of Pt nanoparticles deposited on TiO\(_{2}\) nanotubes. ACS Catal 2:425–432CrossRef
34.
Zurück zum Zitat Ting C-C, Liu C-H, Tai C-Y, Hsu S-C, Chao C-S, Pan F-M (2015) The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism. J Power Sources 280:166–172CrossRef Ting C-C, Liu C-H, Tai C-Y, Hsu S-C, Chao C-S, Pan F-M (2015) The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism. J Power Sources 280:166–172CrossRef
35.
Zurück zum Zitat Xing L, Jia J, Wang Y, Zhang B, Dong S (2010) Pt modified TiO\(_{2}\) nanotubes electrode: preparation and electrocatalytic application for methanol oxidation. Int J Hydrogen Energy 35:12169–12173CrossRef Xing L, Jia J, Wang Y, Zhang B, Dong S (2010) Pt modified TiO\(_{2}\) nanotubes electrode: preparation and electrocatalytic application for methanol oxidation. Int J Hydrogen Energy 35:12169–12173CrossRef
36.
Zurück zum Zitat Muench F, Bohn S, Rauber M, Seidl T, Radetinac A, Kunz U, Lauterbach S, Kleebe H-J, Trautmann C, Ensinger W (2014) Polycarbonate activation for electroless plating by dimethylaminoborane absorption and subsequent nanoparticle deposition. Appl Phys A 116:287–294CrossRef Muench F, Bohn S, Rauber M, Seidl T, Radetinac A, Kunz U, Lauterbach S, Kleebe H-J, Trautmann C, Ensinger W (2014) Polycarbonate activation for electroless plating by dimethylaminoborane absorption and subsequent nanoparticle deposition. Appl Phys A 116:287–294CrossRef
37.
Zurück zum Zitat Muench F, Eils A, Toimil-Molares ME, Hossain UH, Radetinac A, Stegmann C, Kunz U, Lauterbach S, Kleebe H-J, Ensinger W (2014) Polymer activation by reducing agent absorption as a flexible tool for the creation of metal films and nanostructures by electroless plating. Surf Coat Technol 242:100–108CrossRef Muench F, Eils A, Toimil-Molares ME, Hossain UH, Radetinac A, Stegmann C, Kunz U, Lauterbach S, Kleebe H-J, Ensinger W (2014) Polymer activation by reducing agent absorption as a flexible tool for the creation of metal films and nanostructures by electroless plating. Surf Coat Technol 242:100–108CrossRef
38.
Zurück zum Zitat Felix E-M, Antoni M, Pause I, Schaefer S, Kunz U, Weidler N, Muench F, Ensinger W (2016) Template-based synthesis of metallic Pd nanotubes by electroless deposition and their use as catalysts in the 4-nitrophenol model reaction. Green Chem 18:558–564CrossRef Felix E-M, Antoni M, Pause I, Schaefer S, Kunz U, Weidler N, Muench F, Ensinger W (2016) Template-based synthesis of metallic Pd nanotubes by electroless deposition and their use as catalysts in the 4-nitrophenol model reaction. Green Chem 18:558–564CrossRef
39.
Zurück zum Zitat Felix E-M, Muench F, Ensinger W (2014) Green plating of high aspect ratio gold nanotubes and their morphology-dependent performance in enzyme-free peroxide sensing. RSC Adv 4:24504–24510CrossRef Felix E-M, Muench F, Ensinger W (2014) Green plating of high aspect ratio gold nanotubes and their morphology-dependent performance in enzyme-free peroxide sensing. RSC Adv 4:24504–24510CrossRef
40.
Zurück zum Zitat Boehme M, Fu G, Ionescu E, Ensinger W (2010) Fabrication of anatase titanium dioxide nanotubes by electroless deposition using polycarbonate for separate casting method. Nano-Micro Lett 2(1):26–30CrossRef Boehme M, Fu G, Ionescu E, Ensinger W (2010) Fabrication of anatase titanium dioxide nanotubes by electroless deposition using polycarbonate for separate casting method. Nano-Micro Lett 2(1):26–30CrossRef
41.
Zurück zum Zitat Zhang C, Hongmei Y, Li Y, Li F, Gao Y, Song W, Shao Z, Yi B (2013) Simple synthesis of Pt/TiO\(_{2}\) nanotube arrays with high activity and stability. J Electroanal Chem 701:14–19CrossRef Zhang C, Hongmei Y, Li Y, Li F, Gao Y, Song W, Shao Z, Yi B (2013) Simple synthesis of Pt/TiO\(_{2}\) nanotube arrays with high activity and stability. J Electroanal Chem 701:14–19CrossRef
42.
Zurück zum Zitat Wiberg N (2001) Holleman–Wiberg’s inorganic chemistry. Academic Press, New York Wiberg N (2001) Holleman–Wiberg’s inorganic chemistry. Academic Press, New York
43.
Zurück zum Zitat Cornelius TW, Apel PY, Schiedt B, Trautmann C, Toimil-Molares ME, Karim S, Neumann R (2007) Investigation of nanopore evolution in ion track-etched polycarbonate membranes. Nucl Instrum Methods Phys Res B 265:553–557CrossRef Cornelius TW, Apel PY, Schiedt B, Trautmann C, Toimil-Molares ME, Karim S, Neumann R (2007) Investigation of nanopore evolution in ion track-etched polycarbonate membranes. Nucl Instrum Methods Phys Res B 265:553–557CrossRef
44.
Zurück zum Zitat Sertova N, Balanzat E, Toulemonde M, Trautmann C (2009) Investigation of initial stage of chemical etching of ion tracks in polycarbonate. Nucl Instrum Methods Phys Res B 267:1039–1044CrossRef Sertova N, Balanzat E, Toulemonde M, Trautmann C (2009) Investigation of initial stage of chemical etching of ion tracks in polycarbonate. Nucl Instrum Methods Phys Res B 267:1039–1044CrossRef
45.
Zurück zum Zitat Kundu MK, Sadhukhan M, Barman S (2015) Ordered assemblies of silver nanoparticles on carbon nitride sheets and their application in the non-enzymatic sensing of hydrogen peroxide and glucose. J Mater Chem B 3:1289–1300CrossRef Kundu MK, Sadhukhan M, Barman S (2015) Ordered assemblies of silver nanoparticles on carbon nitride sheets and their application in the non-enzymatic sensing of hydrogen peroxide and glucose. J Mater Chem B 3:1289–1300CrossRef
46.
Zurück zum Zitat Yang Z, Qi C, Zheng X, Zheng J (2015) Facile synthesis of silver nanoparticle-decorated graphene oxide nanocomposites and their application for electrochemical sensing. New J Chem 39:9358–9362CrossRef Yang Z, Qi C, Zheng X, Zheng J (2015) Facile synthesis of silver nanoparticle-decorated graphene oxide nanocomposites and their application for electrochemical sensing. New J Chem 39:9358–9362CrossRef
47.
Zurück zum Zitat Abd-Ellah M, Moghimi N, Zhang L, Thomas JP, McGillivray D, Srivastava S, Leung KT (2016) Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application. Nanoscale 8:1658–1664CrossRef Abd-Ellah M, Moghimi N, Zhang L, Thomas JP, McGillivray D, Srivastava S, Leung KT (2016) Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application. Nanoscale 8:1658–1664CrossRef
48.
Zurück zum Zitat Kim EY, Kumar D, Khang G, Lim D-K (2015) Recent advances in gold nanoparticle-based bioengineering applications. J Mater Chem B 3:8433–8444CrossRef Kim EY, Kumar D, Khang G, Lim D-K (2015) Recent advances in gold nanoparticle-based bioengineering applications. J Mater Chem B 3:8433–8444CrossRef
49.
Zurück zum Zitat Schaefer S, Felix E-M, Muench F, Antoni M, Lohaus C, Brötz J, Kunz U, Gärtner I, Ensinger W (2016) NiCo nanotubes plated on Pd seeds as a designed magnetically recollectable catalyt with high noble metal utilisation. RSC Adv 6:70033–70039CrossRef Schaefer S, Felix E-M, Muench F, Antoni M, Lohaus C, Brötz J, Kunz U, Gärtner I, Ensinger W (2016) NiCo nanotubes plated on Pd seeds as a designed magnetically recollectable catalyt with high noble metal utilisation. RSC Adv 6:70033–70039CrossRef
50.
Zurück zum Zitat Pozio A, De Francesco M, Cemmi A, Cardellini F, Giorgi L (2002) Comparison of high surface Pt/C catalysts by cyclic voltammetry. J Power Sources 105:13–19CrossRef Pozio A, De Francesco M, Cemmi A, Cardellini F, Giorgi L (2002) Comparison of high surface Pt/C catalysts by cyclic voltammetry. J Power Sources 105:13–19CrossRef
51.
Zurück zum Zitat Mayrhofer KJJ, Strmcnik D, Blizanac BB, Stamenkovic V, Arenz M, Markovic NM (2008) Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalyst. Electrochim Acta 53:3181–3188CrossRef Mayrhofer KJJ, Strmcnik D, Blizanac BB, Stamenkovic V, Arenz M, Markovic NM (2008) Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalyst. Electrochim Acta 53:3181–3188CrossRef
52.
Zurück zum Zitat Wang L, Yamauchi Y (2009) Facile synthesis of three-dimensional dendritic platinum nanoelectrocatalyst. Chem Mater 21:3562–3569CrossRef Wang L, Yamauchi Y (2009) Facile synthesis of three-dimensional dendritic platinum nanoelectrocatalyst. Chem Mater 21:3562–3569CrossRef
53.
Zurück zum Zitat Hua H, Chenguo H, Zhao Z, Liu H, Xie X, Xi Y (2013) Pt nanoparticles supported on submicrometer-sized TiO\(_{2}\) spheres for effective methanol and ethanol oxidation. Electrochim Acta 105:130–136CrossRef Hua H, Chenguo H, Zhao Z, Liu H, Xie X, Xi Y (2013) Pt nanoparticles supported on submicrometer-sized TiO\(_{2}\) spheres for effective methanol and ethanol oxidation. Electrochim Acta 105:130–136CrossRef
54.
Zurück zum Zitat Cherstiouk OV, Gavrilov AN, Plyasova LM, Molina IY, Tsirlina GA, Savinova ER (2008) Influence of structural defects on the electrocatalytic activity of platinum. J Solid State Electrochem 12:497–509CrossRef Cherstiouk OV, Gavrilov AN, Plyasova LM, Molina IY, Tsirlina GA, Savinova ER (2008) Influence of structural defects on the electrocatalytic activity of platinum. J Solid State Electrochem 12:497–509CrossRef
55.
Zurück zum Zitat Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12CrossRef Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12CrossRef
56.
Zurück zum Zitat Camara GA, Iwasita T (2005) Parallel pathways of ethanol oxidation: the effect of ethanol concentration. J Electroanal Chem 578:315–321CrossRef Camara GA, Iwasita T (2005) Parallel pathways of ethanol oxidation: the effect of ethanol concentration. J Electroanal Chem 578:315–321CrossRef
57.
Zurück zum Zitat Hitmi H, Belgsir EM, Léger J-M, Lamy C, Lezna RO (1994) A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium. Electrochim Acta 39(3):407–415CrossRef Hitmi H, Belgsir EM, Léger J-M, Lamy C, Lezna RO (1994) A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium. Electrochim Acta 39(3):407–415CrossRef
58.
Zurück zum Zitat Bönnemann H, Brijoux W (1996) Catalytically active metal powders and colloids. In: Active materials, pp 339–379. VCH Verlagsgesellschaft mbH Bönnemann H, Brijoux W (1996) Catalytically active metal powders and colloids. In: Active materials, pp 339–379. VCH Verlagsgesellschaft mbH
59.
Zurück zum Zitat Liu Z, Hong L, Tham MP, Lim TH, Jiang H (2006) Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J Power Sources 161:831–835CrossRef Liu Z, Hong L, Tham MP, Lim TH, Jiang H (2006) Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J Power Sources 161:831–835CrossRef
60.
Zurück zum Zitat Perales-Rondón JV, Solla-Guln J, Herrero E, Sánchez-Sánchez CM (2017) Enhanced catalytic activity and stability for the electrooxidation of formic acid on lead modified shape controlled platinum nanoparticles. Appl Catal B 201:48–57CrossRef Perales-Rondón JV, Solla-Guln J, Herrero E, Sánchez-Sánchez CM (2017) Enhanced catalytic activity and stability for the electrooxidation of formic acid on lead modified shape controlled platinum nanoparticles. Appl Catal B 201:48–57CrossRef
61.
Zurück zum Zitat Jiang R, Li B, Fang C, Wang J (2014) Metal/semicondutor hybrid nanostructures for plasmon enhanced applications. Adv Mater 26:5274–5309CrossRef Jiang R, Li B, Fang C, Wang J (2014) Metal/semicondutor hybrid nanostructures for plasmon enhanced applications. Adv Mater 26:5274–5309CrossRef
62.
Zurück zum Zitat Zhao Y, Sun L, Xi M, Feng Q, Jiang C, Fong H (2014) Electrospun TiO\(_2\) nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering. ACS Appl Mater Interfaces 6:5759–5767CrossRef Zhao Y, Sun L, Xi M, Feng Q, Jiang C, Fong H (2014) Electrospun TiO\(_2\) nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering. ACS Appl Mater Interfaces 6:5759–5767CrossRef
Metadaten
Titel
Electrocatalytic applications of platinum-decorated TiO2 nanotubes prepared by a fully wet-chemical synthesis
verfasst von
Markus Antoni
Falk Muench
Ulrike Kunz
Joachim Brötz
Wolfgang Donner
Wolfgang Ensinger
Publikationsdatum
03.04.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1035-4

Weitere Artikel der Ausgabe 13/2017

Journal of Materials Science 13/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.