Skip to main content

2019 | OriginalPaper | Buchkapitel

Electrochemical Applications in Metal Bioleaching

verfasst von : Christoph Kurt Tanne, Axel Schippers

Erschienen in: Bioelectrosynthesis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Abstract

Biohydrometallurgy comprises the recovery of metals by biologically catalyzed metal dissolution from solids in an aqueous solution. The application of this kind of bioprocessing is described as “biomining,” referring to either bioleaching or biooxidation of sulfide metal ores. Acidophilic iron- and sulfur-oxidizing microorganisms are the key to successful biomining. However, minerals such as primary copper sulfides are recalcitrant to dissolution, which is probably due to their semiconductivity or passivation effects, resulting in low reaction rates. Thus, further improvements of the bioleaching process are recommendable. Mineral sulfide dissolution is based on redox reactions and can be accomplished by electrochemical technologies. The impact of electrochemistry on biohydrometallurgy affects processing as well as analytics. Electroanalysis is still the most widely used electrochemical application in mineralogical research.
Electrochemical processing can contribute to bioleaching in two ways. The first approach is the coupling of a mineral sulfide to a galvanic partner or electrocatalyst (spontaneous electron transfer). This approach requires only low energy consumption and takes place without technical installations by the addition of higher redox potential minerals (mostly pyrite), carbonic material, or electrocatalytic ions (mostly silver ions). Consequently, the processed mineral (often chalcopyrite) is preferentially dissolved. The second approach is the application of electrolytic bioreactors (controlled electron transfer). The electrochemical regulation of electrolyte properties by such reactors has found most consideration. It implies the regulation of ferrous and ferric ion ratios, which further results in optimized solution redox potential, less passivation effects, and promotion of microbial activity.
However, many questions remain open and it is recommended that reactor and electrode designs are improved, with the aim of finding options for simplified biohydrometallurgical processing. This chapter focuses on metal sulfide dissolution via bioleaching and does not include other biohydrometallurgical processes such as microbial metal recovery from solution.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S (2014) Biomining: metal recovery from ores with microorganisms. Adv Biochem Eng Biotechnol 141:1–47PubMed Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S (2014) Biomining: metal recovery from ores with microorganisms. Adv Biochem Eng Biotechnol 141:1–47PubMed
2.
Zurück zum Zitat Crundwell FK (2003) How do bacteria interact with minerals? Hydrometallurgy 71(1–2):75–81CrossRef Crundwell FK (2003) How do bacteria interact with minerals? Hydrometallurgy 71(1–2):75–81CrossRef
3.
Zurück zum Zitat Tributsch H (2001) Direct versus indirect bioleaching. Hydrometallurgy 59(2–3):177–185CrossRef Tributsch H (2001) Direct versus indirect bioleaching. Hydrometallurgy 59(2–3):177–185CrossRef
4.
Zurück zum Zitat Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol 97(17):7529–7541PubMedCrossRef Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol 97(17):7529–7541PubMedCrossRef
6.
Zurück zum Zitat Hernandez ME, Newman DK (2001) Extracellular electron transfer. Cell Mol Life Sci 58(11):1562–1571PubMedCrossRef Hernandez ME, Newman DK (2001) Extracellular electron transfer. Cell Mol Life Sci 58(11):1562–1571PubMedCrossRef
8.
Zurück zum Zitat Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J et al (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14(10):651–662PubMedCrossRef Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J et al (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14(10):651–662PubMedCrossRef
9.
Zurück zum Zitat Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron. Anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4(10):752–764PubMedCrossRef Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron. Anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4(10):752–764PubMedCrossRef
10.
Zurück zum Zitat Newman DK (2010) Microbiology. Feasting on minerals. Science (New York, NY) 327(5967):793–794CrossRef Newman DK (2010) Microbiology. Feasting on minerals. Science (New York, NY) 327(5967):793–794CrossRef
12.
Zurück zum Zitat Johnson DB (2014) Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30:24–31PubMedCrossRef Johnson DB (2014) Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30:24–31PubMedCrossRef
13.
Zurück zum Zitat Watling HR (2015) Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Fortschr Mineral 5(1):1–60 Watling HR (2015) Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Fortschr Mineral 5(1):1–60
14.
Zurück zum Zitat Brierley CL (2016) Biological processing of sulfidic ores and concentrates—integrating innovations. In: Lakshmanan VI, Roy R, Ramachandran V (eds) Innovative process development in metallurgical industry. Springer International, Cham, pp 109–135CrossRef Brierley CL (2016) Biological processing of sulfidic ores and concentrates—integrating innovations. In: Lakshmanan VI, Roy R, Ramachandran V (eds) Innovative process development in metallurgical industry. Springer International, Cham, pp 109–135CrossRef
15.
Zurück zum Zitat Johnson DB (2015) Biomining goes underground. Nature Geosci 8(3):165–166CrossRef Johnson DB (2015) Biomining goes underground. Nature Geosci 8(3):165–166CrossRef
16.
Zurück zum Zitat Quatrini R, Johnson DB (2016) Acidophiles: life in extremely acidic environments. Caister Academic, Norfolk Quatrini R, Johnson DB (2016) Acidophiles: life in extremely acidic environments. Caister Academic, Norfolk
17.
Zurück zum Zitat Brierley CL, Brierley JA (2013) Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 97(17):7543–7552PubMedCrossRef Brierley CL, Brierley JA (2013) Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 97(17):7543–7552PubMedCrossRef
18.
Zurück zum Zitat Hedrich S, Rübberdt K, Glombitza F, Sand W, Schippers A, Véliz MV, Willscher S (2017) 22nd Biohydrometallurgy Symposium. Solid State Phenomena, vol 262. Trans Tech Publications, Zurich Hedrich S, Rübberdt K, Glombitza F, Sand W, Schippers A, Véliz MV, Willscher S (2017) 22nd Biohydrometallurgy Symposium. Solid State Phenomena, vol 262. Trans Tech Publications, Zurich
19.
Zurück zum Zitat Schippers A, Sand W (1999) Bacterial leaching of metal sulfides by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65(1):319–321 Schippers A, Sand W (1999) Bacterial leaching of metal sulfides by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65(1):319–321
20.
Zurück zum Zitat Sander M, Hofstetter TB, Gorski CA (2015) Electrochemical analyses of redox-active iron minerals. A review of nonmediated and mediated approaches. Environ Sci Technol 49(10):5862–5878PubMedCrossRef Sander M, Hofstetter TB, Gorski CA (2015) Electrochemical analyses of redox-active iron minerals. A review of nonmediated and mediated approaches. Environ Sci Technol 49(10):5862–5878PubMedCrossRef
21.
Zurück zum Zitat Vaughan DJ (2006) Sulfide mineralogy and geochemistry. Introduction and overview. Rev Mineral Geochem 61(1):1–5CrossRef Vaughan DJ (2006) Sulfide mineralogy and geochemistry. Introduction and overview. Rev Mineral Geochem 61(1):1–5CrossRef
22.
Zurück zum Zitat Córdoba EM, Muñoz JA, Blázquez ML, González F, Ballester A (2008) Leaching of chalcopyrite with ferric ion. Part I. General aspects. Hydrometallurgy 93(3–4):81–87CrossRef Córdoba EM, Muñoz JA, Blázquez ML, González F, Ballester A (2008) Leaching of chalcopyrite with ferric ion. Part I. General aspects. Hydrometallurgy 93(3–4):81–87CrossRef
23.
Zurück zum Zitat Khoshkhoo M, Dopson M, Shchukarev A, Sandström Å (2014) Chalcopyrite leaching and bioleaching. An X-ray photoelectron spectroscopic (XPS) investigation on the nature of hindered dissolution. Hydrometallurgy 149:220–227CrossRef Khoshkhoo M, Dopson M, Shchukarev A, Sandström Å (2014) Chalcopyrite leaching and bioleaching. An X-ray photoelectron spectroscopic (XPS) investigation on the nature of hindered dissolution. Hydrometallurgy 149:220–227CrossRef
24.
Zurück zum Zitat Tshilombo AF (2004) Mechanism and kinetics of chalcopyrite passivation and depassivation during ferric and microbial leaching. Ph.D. thesis, University of British Columbia Tshilombo AF (2004) Mechanism and kinetics of chalcopyrite passivation and depassivation during ferric and microbial leaching. Ph.D. thesis, University of British Columbia
25.
Zurück zum Zitat Crundwell FK (1988) Effect of iron impurity in zinc sulfide concentrates on the rate of dissolution. AICHE J 34(7):1128–1134CrossRef Crundwell FK (1988) Effect of iron impurity in zinc sulfide concentrates on the rate of dissolution. AICHE J 34(7):1128–1134CrossRef
26.
Zurück zum Zitat Crundwell FK (2015) The semiconductor mechanism of dissolution and the pseudo-passivation of chalcopyrite. Can Metall Q 54(3):279–288CrossRef Crundwell FK (2015) The semiconductor mechanism of dissolution and the pseudo-passivation of chalcopyrite. Can Metall Q 54(3):279–288CrossRef
27.
Zurück zum Zitat Osseo-Asare K (1992) Semiconductor electrochemistry and hydrometallurgical dissolution processes. Hydrometallurgy 29(1–3):61–90CrossRef Osseo-Asare K (1992) Semiconductor electrochemistry and hydrometallurgical dissolution processes. Hydrometallurgy 29(1–3):61–90CrossRef
28.
Zurück zum Zitat Gerischer H (1990) The impact of semiconductors on the concepts of electrochemistry. Electrochim Acta 35(11–12):1677–1699CrossRef Gerischer H (1990) The impact of semiconductors on the concepts of electrochemistry. Electrochim Acta 35(11–12):1677–1699CrossRef
29.
Zurück zum Zitat Debernardi G, Carlesi C (2013) Chemical-electrochemical approaches to the study passivation of chalcopyrite. Miner Process Extr Metall Rev 34(1):10–41CrossRef Debernardi G, Carlesi C (2013) Chemical-electrochemical approaches to the study passivation of chalcopyrite. Miner Process Extr Metall Rev 34(1):10–41CrossRef
30.
Zurück zum Zitat Tributsch H, Bennett JC (1981) Semiconductor-electrochemical aspects of bacterial leaching. I. Oxidation of metal sulphides with large energy gaps. J Chem Technol Biotechnol 31(1):565–577CrossRef Tributsch H, Bennett JC (1981) Semiconductor-electrochemical aspects of bacterial leaching. I. Oxidation of metal sulphides with large energy gaps. J Chem Technol Biotechnol 31(1):565–577CrossRef
31.
Zurück zum Zitat Tributsch H, Bennett JC (1981) Semiconductor-electrochemical aspects of bacterial leaching. Part 2. Survey of rate-controlling sulphide properties. J Chem Technol Biotechnol 31(1):627–635CrossRef Tributsch H, Bennett JC (1981) Semiconductor-electrochemical aspects of bacterial leaching. Part 2. Survey of rate-controlling sulphide properties. J Chem Technol Biotechnol 31(1):627–635CrossRef
32.
Zurück zum Zitat Mustin C, Berthelin J, Marion P, Donato P d (1992) Corrosion and electrochemical oxidation of a pyrite by Thiobacillus ferrooxidans. Appl Environ Microbiol 58(4):1175–1182PubMedPubMedCentral Mustin C, Berthelin J, Marion P, Donato P d (1992) Corrosion and electrochemical oxidation of a pyrite by Thiobacillus ferrooxidans. Appl Environ Microbiol 58(4):1175–1182PubMedPubMedCentral
33.
Zurück zum Zitat Ballester A, Blázquez ML, González F, Muñoz JA (2007) Catalytic role of silver and other ions on the mechanism of chemical and biological leaching. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Dordrecht, pp 77–101CrossRef Ballester A, Blázquez ML, González F, Muñoz JA (2007) Catalytic role of silver and other ions on the mechanism of chemical and biological leaching. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Dordrecht, pp 77–101CrossRef
34.
Zurück zum Zitat Lara RH, Garcia-Meza JV, González I, Cruz R (2013) Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol 97(6):2711–2724PubMedCrossRef Lara RH, Garcia-Meza JV, González I, Cruz R (2013) Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol 97(6):2711–2724PubMedCrossRef
35.
Zurück zum Zitat Gu G-H, Sun X-j, Hu K-T, Li J-H, Qiu G-Z (2012) Electrochemical oxidation behavior of pyrite bioleaching by Acidthiobacillus ferrooxidans. Trans Nonferrous Metals Soc China 22(5):1250–1254CrossRef Gu G-H, Sun X-j, Hu K-T, Li J-H, Qiu G-Z (2012) Electrochemical oxidation behavior of pyrite bioleaching by Acidthiobacillus ferrooxidans. Trans Nonferrous Metals Soc China 22(5):1250–1254CrossRef
36.
Zurück zum Zitat Mehta AP, Murr LE (1983) Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides. Hydrometallurgy 9(3):235–256CrossRef Mehta AP, Murr LE (1983) Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides. Hydrometallurgy 9(3):235–256CrossRef
37.
Zurück zum Zitat Zhao H, Wang J, Hu M, Qin W, Zhang Y, Qiu G (2013) Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans. Bioresour Technol 149:71–76PubMedCrossRef Zhao H, Wang J, Hu M, Qin W, Zhang Y, Qiu G (2013) Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans. Bioresour Technol 149:71–76PubMedCrossRef
38.
Zurück zum Zitat Misra M, Bukka K, Chen S (1996) The effect of growth medium of Thiobacillus ferrooxidans on pyrite flotation. Miner Eng 9(2):157–168CrossRef Misra M, Bukka K, Chen S (1996) The effect of growth medium of Thiobacillus ferrooxidans on pyrite flotation. Miner Eng 9(2):157–168CrossRef
39.
Zurück zum Zitat Arena FA, Suegama PH, Bevilaqua D, dos Santos ALA, Fugivara CS, Benedetti AV (2016) Simulating the main stages of chalcopyrite leaching and bioleaching in ferrous ions solution. An electrochemical impedance study with a modified carbon paste electrode. Miner Eng 92:229–241CrossRef Arena FA, Suegama PH, Bevilaqua D, dos Santos ALA, Fugivara CS, Benedetti AV (2016) Simulating the main stages of chalcopyrite leaching and bioleaching in ferrous ions solution. An electrochemical impedance study with a modified carbon paste electrode. Miner Eng 92:229–241CrossRef
40.
Zurück zum Zitat Hiroyoshi N, Kitagawa H, Tsunekawa M (2008) Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy 91(1–4):144–149CrossRef Hiroyoshi N, Kitagawa H, Tsunekawa M (2008) Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy 91(1–4):144–149CrossRef
41.
Zurück zum Zitat Bevilaqua D, Acciari HA, Benedetti AV, Garcia Jr O (2007) Electrochemical techniques used to study bacterial-metal sulfides interactions in acidic environments. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Dordrecht, pp 59–76CrossRef Bevilaqua D, Acciari HA, Benedetti AV, Garcia Jr O (2007) Electrochemical techniques used to study bacterial-metal sulfides interactions in acidic environments. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Dordrecht, pp 59–76CrossRef
42.
Zurück zum Zitat Bevilaqua D, Suegama PH, Garcia Jr O, Benedetti AV (2011) Electrochemical studies of sulphide minerals in the presence and absence of A. ferrooxidans. In: Sobral LGS, de Oliveira DM, de Souza CEG (eds) Biohydro-metallurgical processes: a practical approach. Centro de Tecnologia Mineral, Ministry of Science, Education and Innovation, Rio de Janeiro, pp 141–167 Bevilaqua D, Suegama PH, Garcia Jr O, Benedetti AV (2011) Electrochemical studies of sulphide minerals in the presence and absence of A. ferrooxidans. In: Sobral LGS, de Oliveira DM, de Souza CEG (eds) Biohydro-metallurgical processes: a practical approach. Centro de Tecnologia Mineral, Ministry of Science, Education and Innovation, Rio de Janeiro, pp 141–167
43.
Zurück zum Zitat Horta DG, Bevilaqua D, Acciari HA, Garcia Jr O, Benedetti AV (2009) Optimization of the use of carbon paste electrodes (CPE) for electrochemical study of the chalcopyrite. Quím Nova 32(7):1734–1738CrossRef Horta DG, Bevilaqua D, Acciari HA, Garcia Jr O, Benedetti AV (2009) Optimization of the use of carbon paste electrodes (CPE) for electrochemical study of the chalcopyrite. Quím Nova 32(7):1734–1738CrossRef
44.
Zurück zum Zitat Olvera OG, Rebolledo M, Asselin E (2016) Atmospheric ferric sulfate leaching of chalcopyrite. Thermodynamics, kinetics and electrochemistry. Hydrometallurgy 165:148–158CrossRef Olvera OG, Rebolledo M, Asselin E (2016) Atmospheric ferric sulfate leaching of chalcopyrite. Thermodynamics, kinetics and electrochemistry. Hydrometallurgy 165:148–158CrossRef
45.
Zurück zum Zitat Viramontes-Gamboa G, Rivera-Vasquez BF, Dixon DG (2006) The active-to-passive transition of chalcopyrite. In: 209th ECS Meeting. Denver, Colorado, May 7–May 12, pp 165–175 Viramontes-Gamboa G, Rivera-Vasquez BF, Dixon DG (2006) The active-to-passive transition of chalcopyrite. In: 209th ECS Meeting. Denver, Colorado, May 7–May 12, pp 165–175
46.
Zurück zum Zitat Viramontes-Gamboa G, Rivera-Vasquez BF, Dixon DG (2007) The active-passive behavior of chalcopyrite. J Electrochem Soc 154(6):C299–C311CrossRef Viramontes-Gamboa G, Rivera-Vasquez BF, Dixon DG (2007) The active-passive behavior of chalcopyrite. J Electrochem Soc 154(6):C299–C311CrossRef
47.
Zurück zum Zitat Renock D, Shuller-Nickles LC (2015) Predicting geologic corrosion with electrodes. Elements 11(5):331–336CrossRef Renock D, Shuller-Nickles LC (2015) Predicting geologic corrosion with electrodes. Elements 11(5):331–336CrossRef
48.
Zurück zum Zitat Warren GW, Wadsworth ME, El-Raghy SM (1982) Passive and transpassive anodic behavior of chalcopyrite in acid solutions. Metall Trans B 13(4):571–579CrossRef Warren GW, Wadsworth ME, El-Raghy SM (1982) Passive and transpassive anodic behavior of chalcopyrite in acid solutions. Metall Trans B 13(4):571–579CrossRef
49.
Zurück zum Zitat Holmes PR, Crundwell FK (1995) Kinetic aspects of galvanic interactions between minerals during dissolution. Hydrometallurgy 39(1–3):353–375CrossRef Holmes PR, Crundwell FK (1995) Kinetic aspects of galvanic interactions between minerals during dissolution. Hydrometallurgy 39(1–3):353–375CrossRef
50.
Zurück zum Zitat Majima H (2013) How oxidation affects selective flotation of complex sulphide ores. Can Metall Q 8(3):269–273CrossRef Majima H (2013) How oxidation affects selective flotation of complex sulphide ores. Can Metall Q 8(3):269–273CrossRef
51.
Zurück zum Zitat Attia YA, El-Zeky M (1990) Effects of galvanic interactions of sulfides on extraction of precious metals from refractory complex sulfides by bioleaching. Int J Miner Process 30(1–2):99–111CrossRef Attia YA, El-Zeky M (1990) Effects of galvanic interactions of sulfides on extraction of precious metals from refractory complex sulfides by bioleaching. Int J Miner Process 30(1–2):99–111CrossRef
52.
Zurück zum Zitat Wan RY, Miller JD, Simkovich G (1984) Enhanced ferric sulphate leaching of copper from CuFeS2 and C particulate aggregates. In: Proceedings of MINTEK 50: an International Conference on Recent Advances in Mineral Science and Technology, Johannesburg, South Africa (2), pp 575–588 Wan RY, Miller JD, Simkovich G (1984) Enhanced ferric sulphate leaching of copper from CuFeS2 and C particulate aggregates. In: Proceedings of MINTEK 50: an International Conference on Recent Advances in Mineral Science and Technology, Johannesburg, South Africa (2), pp 575–588
53.
Zurück zum Zitat Liu W, Yang H-Y, Song Y, Tong L-L (2015) Catalytic effects of activated carbon and surfactants on bioleaching of cobalt ore. Hydrometallurgy 152:69–75CrossRef Liu W, Yang H-Y, Song Y, Tong L-L (2015) Catalytic effects of activated carbon and surfactants on bioleaching of cobalt ore. Hydrometallurgy 152:69–75CrossRef
54.
Zurück zum Zitat Mehrabani JV, Shafaei SZ, Noaparast M, Mousavi SM (2016) Bioleaching of different pyrites and sphalerite in the presence of graphite. Geomicrobiol J:1–12 Mehrabani JV, Shafaei SZ, Noaparast M, Mousavi SM (2016) Bioleaching of different pyrites and sphalerite in the presence of graphite. Geomicrobiol J:1–12
55.
Zurück zum Zitat Córdoba EM, Muñoz JA, Blázquez ML, González F, Ballester A (2008) Leaching of chalcopyrite with ferric ion. Part III. Effect of redox potential on the silver-catalyzed process. Hydrometallurgy 93(3–4):97–105CrossRef Córdoba EM, Muñoz JA, Blázquez ML, González F, Ballester A (2008) Leaching of chalcopyrite with ferric ion. Part III. Effect of redox potential on the silver-catalyzed process. Hydrometallurgy 93(3–4):97–105CrossRef
56.
Zurück zum Zitat Ghahremaninezhad A, Radzinski R, Gheorghiu T, Dixon DG, Asselin E (2015) A model for silver ion catalysis of chalcopyrite (CuFeS2) dissolution. Hydrometallurgy 155:95–104CrossRef Ghahremaninezhad A, Radzinski R, Gheorghiu T, Dixon DG, Asselin E (2015) A model for silver ion catalysis of chalcopyrite (CuFeS2) dissolution. Hydrometallurgy 155:95–104CrossRef
57.
Zurück zum Zitat Muñoz JA, Gómez C, Ballester A, Blázquez ML, González F, Figueroa M (1997) Electrochemical behaviour of chalcopyrite in the presence of silver and Sulfolobus bacteria. J Appl Electrochem 28(1):49–56CrossRef Muñoz JA, Gómez C, Ballester A, Blázquez ML, González F, Figueroa M (1997) Electrochemical behaviour of chalcopyrite in the presence of silver and Sulfolobus bacteria. J Appl Electrochem 28(1):49–56CrossRef
58.
Zurück zum Zitat Biegler T (1977) Reduction kinetics of a chalcopyrite electrode surface. J Electroanal Chem Interfacial Electrochem 85(1):101–106CrossRef Biegler T (1977) Reduction kinetics of a chalcopyrite electrode surface. J Electroanal Chem Interfacial Electrochem 85(1):101–106CrossRef
59.
Zurück zum Zitat Felker DL (1984) The electrochemical dissolution of copper sulfides using a fluidized bed electrochemical reactor. PhD thesis of Iowa State University, Ames, Retrospective Theses and Dissertations, 8162 Felker DL (1984) The electrochemical dissolution of copper sulfides using a fluidized bed electrochemical reactor. PhD thesis of Iowa State University, Ames, Retrospective Theses and Dissertations, 8162
60.
Zurück zum Zitat Yunker SB, Radovich JM (1986) Enhancement of growth and ferrous iron oxidation rates of T. ferrooxidans by electrochemical reduction of ferric iron. Biotechnol Bioeng 28(12):1867–1875PubMedCrossRef Yunker SB, Radovich JM (1986) Enhancement of growth and ferrous iron oxidation rates of T. ferrooxidans by electrochemical reduction of ferric iron. Biotechnol Bioeng 28(12):1867–1875PubMedCrossRef
61.
Zurück zum Zitat Natarajan KA (1992) Effect of applied potentials on the activity and growth of Thiobacillus ferrooxidans. Biotechnol Bioeng 39(9):907–913PubMedCrossRef Natarajan KA (1992) Effect of applied potentials on the activity and growth of Thiobacillus ferrooxidans. Biotechnol Bioeng 39(9):907–913PubMedCrossRef
62.
Zurück zum Zitat Natarajan KA (1992) Bioleaching of sulphides under applied potentials. Hydrometallurgy 29(1–3):161–172CrossRef Natarajan KA (1992) Bioleaching of sulphides under applied potentials. Hydrometallurgy 29(1–3):161–172CrossRef
63.
Zurück zum Zitat Natarajan KA (1992) Electrobioleaching of base metal sulfides. Metall Trans B 23(1):5–11CrossRef Natarajan KA (1992) Electrobioleaching of base metal sulfides. Metall Trans B 23(1):5–11CrossRef
64.
Zurück zum Zitat Selvi SC, Modak JM, Natarajan KA (1998) Electrobioleaching of sphalerite flotation concentrate. Miner Eng 11(8):783–788CrossRef Selvi SC, Modak JM, Natarajan KA (1998) Electrobioleaching of sphalerite flotation concentrate. Miner Eng 11(8):783–788CrossRef
65.
Zurück zum Zitat Kumari A, Natarajan KA (2001) Electrobioleaching of polymetallic ocean nodules. Hydrometallurgy 62(2):125–134CrossRef Kumari A, Natarajan KA (2001) Electrobioleaching of polymetallic ocean nodules. Hydrometallurgy 62(2):125–134CrossRef
66.
Zurück zum Zitat Kumari A, Natarajan KA (2002) Development of a clean bioelectrochemical process for leaching of ocean manganese nodules. Miner Eng 15(1–2):103–106CrossRef Kumari A, Natarajan KA (2002) Development of a clean bioelectrochemical process for leaching of ocean manganese nodules. Miner Eng 15(1–2):103–106CrossRef
67.
Zurück zum Zitat Kumari A, Natarajan KA (2002) Electrochemical aspects of leaching of ocean nodules in the presence and absence of microorganisms. Int J Miner Process 66(1–4):29–47CrossRef Kumari A, Natarajan KA (2002) Electrochemical aspects of leaching of ocean nodules in the presence and absence of microorganisms. Int J Miner Process 66(1–4):29–47CrossRef
68.
Zurück zum Zitat Ahmadi A, Ranjbar M, Schaffie M (2012) Catalytic effect of pyrite on the leaching of chalcopyrite concentrates in chemical, biological and electrobiochemical systems. Miner Eng 34:11–18CrossRef Ahmadi A, Ranjbar M, Schaffie M (2012) Catalytic effect of pyrite on the leaching of chalcopyrite concentrates in chemical, biological and electrobiochemical systems. Miner Eng 34:11–18CrossRef
69.
Zurück zum Zitat Ahmadi A, Ranjbar M, Schaffie M (2013) Effect of activated carbon addition on the conventional and electrochemical bioleaching of chalcopyrite concentrates. Geomicrobiol J 30(3):237–244CrossRef Ahmadi A, Ranjbar M, Schaffie M (2013) Effect of activated carbon addition on the conventional and electrochemical bioleaching of chalcopyrite concentrates. Geomicrobiol J 30(3):237–244CrossRef
70.
Zurück zum Zitat Ahmadi A, Schaffie M, Manafi Z, Ranjbar M (2010) Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor. Hydrometallurgy 104(1):99–105CrossRef Ahmadi A, Schaffie M, Manafi Z, Ranjbar M (2010) Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor. Hydrometallurgy 104(1):99–105CrossRef
71.
Zurück zum Zitat Ahmadi A, Schaffie M, Petersen J, Schippers A, Ranjbar M (2011) Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density. Hydrometallurgy 106(1–2):84–92CrossRef Ahmadi A, Schaffie M, Petersen J, Schippers A, Ranjbar M (2011) Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density. Hydrometallurgy 106(1–2):84–92CrossRef
72.
Zurück zum Zitat Third KA, Cord-Ruwisch R, Watling HR (2002) Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite. Biotechnol Bioeng 78(4):433–441PubMedCrossRef Third KA, Cord-Ruwisch R, Watling HR (2002) Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite. Biotechnol Bioeng 78(4):433–441PubMedCrossRef
73.
Zurück zum Zitat Harvey PI, Crundwell FK (1996) The effect of As(III) on the growth of Thiobacillus ferrooxidans in an electrolytic cell under controlled redox potentials. Miner Eng 9(10):1059–1068CrossRef Harvey PI, Crundwell FK (1996) The effect of As(III) on the growth of Thiobacillus ferrooxidans in an electrolytic cell under controlled redox potentials. Miner Eng 9(10):1059–1068CrossRef
74.
Zurück zum Zitat Fowler TA, Crundwell FK (1999) Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Appl Environ Microbiol 65(12):5285–5292PubMedPubMedCentral Fowler TA, Crundwell FK (1999) Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Appl Environ Microbiol 65(12):5285–5292PubMedPubMedCentral
75.
Zurück zum Zitat Fowler TA, Holmes PR, Crundwell FK (1999) Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl Environ Microbiol 65(7):2987–2993PubMedPubMedCentral Fowler TA, Holmes PR, Crundwell FK (1999) Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl Environ Microbiol 65(7):2987–2993PubMedPubMedCentral
76.
Zurück zum Zitat Holmes PR, Crundwell FK (2013) Polysulfides do not cause passivation. Results from the dissolution of pyrite and implications for other sulfide minerals. Hydrometallurgy 139:101–110CrossRef Holmes PR, Crundwell FK (2013) Polysulfides do not cause passivation. Results from the dissolution of pyrite and implications for other sulfide minerals. Hydrometallurgy 139:101–110CrossRef
77.
Zurück zum Zitat Khoshkhoo M, Dopson M, Shchukarev A, Sandström Å (2014) Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate. Hydrometallurgy 144–145:7–14CrossRef Khoshkhoo M, Dopson M, Shchukarev A, Sandström Å (2014) Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate. Hydrometallurgy 144–145:7–14CrossRef
78.
Zurück zum Zitat Lotfalian M, Ranjbar M, Fazaelipoor MH, Schaffie M, Manafi Z (2015) The effect of redox control on the continuous bioleaching of chalcopyrite concentrate. Miner Eng 81:52–57CrossRef Lotfalian M, Ranjbar M, Fazaelipoor MH, Schaffie M, Manafi Z (2015) The effect of redox control on the continuous bioleaching of chalcopyrite concentrate. Miner Eng 81:52–57CrossRef
79.
Zurück zum Zitat Klauber C (2008) A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. Int J Miner Process 86(1–4):1–17CrossRef Klauber C (2008) A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. Int J Miner Process 86(1–4):1–17CrossRef
80.
Zurück zum Zitat Nancharaiah YV, Mohan SV, Lens PNL (2016) Biological and bioelectrochemical recovery of critical and scarce metals. Trends Biotechnol 34(2):137–155PubMedCrossRef Nancharaiah YV, Mohan SV, Lens PNL (2016) Biological and bioelectrochemical recovery of critical and scarce metals. Trends Biotechnol 34(2):137–155PubMedCrossRef
81.
Zurück zum Zitat Ni G, Christel S, Roman P, Wong ZL, Bijmans MFM, Dopson M (2016) Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms. Res Microbiol 167(7):568–575PubMedPubMedCentralCrossRef Ni G, Christel S, Roman P, Wong ZL, Bijmans MFM, Dopson M (2016) Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms. Res Microbiol 167(7):568–575PubMedPubMedCentralCrossRef
Metadaten
Titel
Electrochemical Applications in Metal Bioleaching
verfasst von
Christoph Kurt Tanne
Axel Schippers
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/10_2017_36

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.