Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2018

16.05.2018

Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X Na3PO4 + Y Na2HPO4) Using Electrochemical Impedance Spectroscopy and Mott–Schottky Techniques

verfasst von: Arash Fattah-alhosseini, Hamed Asgari

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott–Schottky (M–S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M–S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.E. Gray and B. Luan, Protective Coatings on Magnesium and Its Alloys—A Critical Review, J. Alloy. Compd., 2002, 336, p 88–113CrossRef J.E. Gray and B. Luan, Protective Coatings on Magnesium and Its Alloys—A Critical Review, J. Alloy. Compd., 2002, 336, p 88–113CrossRef
2.
Zurück zum Zitat T. Rzychoń and A. Kiełbus, Microstructure of WE43 Casting Magnesium Alloy, J. Achiev. Mater. Manuf. Eng., 2007, 21, p 31–34 T. Rzychoń and A. Kiełbus, Microstructure of WE43 Casting Magnesium Alloy, J. Achiev. Mater. Manuf. Eng., 2007, 21, p 31–34
3.
Zurück zum Zitat J.W. Chang, X.W. Guo, S.M. He, P.H. Fu, L.M. Peng, and W.J. Ding, Effect of Heat Treatment on Corrosion and Electrochemical Behaviour of Mg–3Nd–0.2Zn–0.4Zr (wt%) Alloy, Electrochim. Acta, 2007, 52, p 3160–3167CrossRef J.W. Chang, X.W. Guo, S.M. He, P.H. Fu, L.M. Peng, and W.J. Ding, Effect of Heat Treatment on Corrosion and Electrochemical Behaviour of Mg–3Nd–0.2Zn–0.4Zr (wt%) Alloy, Electrochim. Acta, 2007, 52, p 3160–3167CrossRef
4.
Zurück zum Zitat R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, and G.E. Thompson, Corrosion Resistance of WE43 and AZ91D Magnesium Alloys with Phosphate PEO Coatings, Corros. Sci., 2008, 50, p 1744–1752CrossRef R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, and G.E. Thompson, Corrosion Resistance of WE43 and AZ91D Magnesium Alloys with Phosphate PEO Coatings, Corros. Sci., 2008, 50, p 1744–1752CrossRef
5.
Zurück zum Zitat G.L. Song and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858CrossRef G.L. Song and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858CrossRef
6.
Zurück zum Zitat G.L. Song and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 1999, 1, p 11–33CrossRef G.L. Song and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 1999, 1, p 11–33CrossRef
7.
Zurück zum Zitat X. Zhang, K. Zhang, X.-G. Li et al., Corrosion and Electrochemical Behavior of As-cast Mg-5Y-7Gd-1Nd-0.5Zr Magnesium Alloys in 5% NaCl Aqueous Solution, Prog. Nat. Sci. Mater. Int., 2011, 21, p 314–321CrossRef X. Zhang, K. Zhang, X.-G. Li et al., Corrosion and Electrochemical Behavior of As-cast Mg-5Y-7Gd-1Nd-0.5Zr Magnesium Alloys in 5% NaCl Aqueous Solution, Prog. Nat. Sci. Mater. Int., 2011, 21, p 314–321CrossRef
8.
Zurück zum Zitat T. Rzychoń, J. Michalska, and A. Kiełbus, Corrosion Resistance of Mg-RE-Zr Alloys, J. Achiev. Mater. Manuf. Eng., 2007, 21, p 51–54 T. Rzychoń, J. Michalska, and A. Kiełbus, Corrosion Resistance of Mg-RE-Zr Alloys, J. Achiev. Mater. Manuf. Eng., 2007, 21, p 51–54
9.
Zurück zum Zitat H. Kalb, A. Rzany, and B. Hensel, Impact of Microgalvanic Corrosion on the Degradation Morphology of WE43 and Pure Magnesium Under Exposure to Simulated Body Fluid, Corros. Sci., 2012, 57, p 122–130CrossRef H. Kalb, A. Rzany, and B. Hensel, Impact of Microgalvanic Corrosion on the Degradation Morphology of WE43 and Pure Magnesium Under Exposure to Simulated Body Fluid, Corros. Sci., 2012, 57, p 122–130CrossRef
10.
Zurück zum Zitat H. Ardelean, A. Seyeux, S. Zanna et al., Corrosion Processes of Mg–Y–Nd–Zr Alloys in Na2SO4 Electrolyte, Corros. Sci., 2013, 73, p 196–207CrossRef H. Ardelean, A. Seyeux, S. Zanna et al., Corrosion Processes of Mg–Y–Nd–Zr Alloys in Na2SO4 Electrolyte, Corros. Sci., 2013, 73, p 196–207CrossRef
11.
Zurück zum Zitat A.E. Coy, F. Viejo, P. Skeldon, and G.E. Thompson, Susceptibility of Rare-Earth-Magnesium Alloys to Micro-galvanic Corrosion, Corros. Sci., 2010, 52, p 3896–3906CrossRef A.E. Coy, F. Viejo, P. Skeldon, and G.E. Thompson, Susceptibility of Rare-Earth-Magnesium Alloys to Micro-galvanic Corrosion, Corros. Sci., 2010, 52, p 3896–3906CrossRef
12.
Zurück zum Zitat M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed., NACE, Houston, 1974 M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed., NACE, Houston, 1974
13.
Zurück zum Zitat R. Pinto, M.G.S. Ferreira, M.J. Carmezim, and M.F. Montemor, Passive Behavior of Magnesium Alloys (Mg–Zr) Containing Rare-Earth Elements in Alkaline Media, Electrochim. Acta, 2010, 55, p 2482–2489CrossRef R. Pinto, M.G.S. Ferreira, M.J. Carmezim, and M.F. Montemor, Passive Behavior of Magnesium Alloys (Mg–Zr) Containing Rare-Earth Elements in Alkaline Media, Electrochim. Acta, 2010, 55, p 2482–2489CrossRef
14.
Zurück zum Zitat Y. Mizutani, S.J. Kim, R. Ichino, and M. Okido, Anodizing of Mg Alloys in Alkaline Solutions, Surf. Coat. Technol., 2003, 169–170, p 143–146CrossRef Y. Mizutani, S.J. Kim, R. Ichino, and M. Okido, Anodizing of Mg Alloys in Alkaline Solutions, Surf. Coat. Technol., 2003, 169–170, p 143–146CrossRef
15.
Zurück zum Zitat Y. Song, E.H. Han, K. Dong et al., Microstructure and Protection Characteristics of the Naturally Formed Oxide Films on Mg–xZn Alloys, Corros. Sci., 2013, 72, p 133–143CrossRef Y. Song, E.H. Han, K. Dong et al., Microstructure and Protection Characteristics of the Naturally Formed Oxide Films on Mg–xZn Alloys, Corros. Sci., 2013, 72, p 133–143CrossRef
16.
Zurück zum Zitat H. Duan, Ch Yan, and F. Wang, Effect of Electrolyte Additives on Performance of Plasma Electrolytic Oxidation Films Formed on Magnesium Alloy AZ91D, Electrochim. Acta, 2007, 52, p 3785–3793CrossRef H. Duan, Ch Yan, and F. Wang, Effect of Electrolyte Additives on Performance of Plasma Electrolytic Oxidation Films Formed on Magnesium Alloy AZ91D, Electrochim. Acta, 2007, 52, p 3785–3793CrossRef
17.
Zurück zum Zitat S.O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, and M.K. Keshavarz, Microstructure, Mechanical Properties and Electrochemical Behavior of AA1050 Processed by Accumulative Roll Bonding (ARB), J. Alloy. Compd., 2016, 688, p 44–55CrossRef S.O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, and M.K. Keshavarz, Microstructure, Mechanical Properties and Electrochemical Behavior of AA1050 Processed by Accumulative Roll Bonding (ARB), J. Alloy. Compd., 2016, 688, p 44–55CrossRef
18.
Zurück zum Zitat A. Fattah-alhosseini, M. Vakili-Azghandi, M. Sheikhi, and M.K. Keshavarz, Passive and Electrochemical Response of Friction Stir Processed Pure Titanium, J. Alloy. Compd., 2017, 704, p 499–508CrossRef A. Fattah-alhosseini, M. Vakili-Azghandi, M. Sheikhi, and M.K. Keshavarz, Passive and Electrochemical Response of Friction Stir Processed Pure Titanium, J. Alloy. Compd., 2017, 704, p 499–508CrossRef
19.
Zurück zum Zitat Y. Li, T. Zhang, and F. Wang, Effect of Microcrystallization on Corrosion Resistance of AZ91D Alloy, Electrochim. Acta, 2006, 51, p 2845–2850CrossRef Y. Li, T. Zhang, and F. Wang, Effect of Microcrystallization on Corrosion Resistance of AZ91D Alloy, Electrochim. Acta, 2006, 51, p 2845–2850CrossRef
20.
Zurück zum Zitat R. Walter and M. Bobby Kannan, In-vitro Degradation Behaviour of WE54 Magnesium Alloy in Simulated Body Fluid, Mater. Lett., 2011, 65, p 748–750CrossRef R. Walter and M. Bobby Kannan, In-vitro Degradation Behaviour of WE54 Magnesium Alloy in Simulated Body Fluid, Mater. Lett., 2011, 65, p 748–750CrossRef
21.
Zurück zum Zitat R. Pinto, M.G.S. Ferreira, M.J. Carmezim, and M.F. Montemor, The Corrosion Behaviour of Rare-Earth Containing Magnesium Alloys in Borate Buffer Solution, Electrochim. Acta, 2011, 56, p 1535–1545CrossRef R. Pinto, M.G.S. Ferreira, M.J. Carmezim, and M.F. Montemor, The Corrosion Behaviour of Rare-Earth Containing Magnesium Alloys in Borate Buffer Solution, Electrochim. Acta, 2011, 56, p 1535–1545CrossRef
22.
Zurück zum Zitat M. Sun, G. Wu, W. Wang, and W. Ding, Effect of Zr on the Microstructure, Mechanical Properties and Corrosion Resistance of Mg–10Gd–3Y Magnesium Alloy, Mater. Sci. Eng. A, 2009, 523, p 145–151CrossRef M. Sun, G. Wu, W. Wang, and W. Ding, Effect of Zr on the Microstructure, Mechanical Properties and Corrosion Resistance of Mg–10Gd–3Y Magnesium Alloy, Mater. Sci. Eng. A, 2009, 523, p 145–151CrossRef
23.
Zurück zum Zitat G. Ben-Hamu, D. Eliezer, K.S. Shin, and S. Cohen, The Relation Between Microstructure and Corrosion Behavior of Mg–Y–RE–Zr Alloys, J. Alloy. Compd., 2007, 431, p 269–276CrossRef G. Ben-Hamu, D. Eliezer, K.S. Shin, and S. Cohen, The Relation Between Microstructure and Corrosion Behavior of Mg–Y–RE–Zr Alloys, J. Alloy. Compd., 2007, 431, p 269–276CrossRef
24.
Zurück zum Zitat J. Chang, X. Guo, Sh He et al., Investigation of the Corrosion for Mg–xGd–3Y–0.4Zr (x = 6,8, 10,12 wt%) Alloys in a Peak-Aged Condition, Corros. Sci., 2008, 50, p 166–177CrossRef J. Chang, X. Guo, Sh He et al., Investigation of the Corrosion for Mg–xGd–3Y–0.4Zr (x = 6,8, 10,12 wt%) Alloys in a Peak-Aged Condition, Corros. Sci., 2008, 50, p 166–177CrossRef
25.
Zurück zum Zitat G.L. Song and D. StJohn, The Effect of Zirconium Grain Refinement on the Corrosion Behaviour of Magnesium-Rare Earth Alloy MEZ, J. Light Met., 2002, 2, p 1–16CrossRef G.L. Song and D. StJohn, The Effect of Zirconium Grain Refinement on the Corrosion Behaviour of Magnesium-Rare Earth Alloy MEZ, J. Light Met., 2002, 2, p 1–16CrossRef
26.
Zurück zum Zitat J.P. Li, P. Wang, Y.C. Guo et al., Microstructure and Microgalvanic Corrosion of an Extruded Mg-10Gd-2Y-0.5Zr Magnesium Alloy, Mater. Sci. Forum, 2013, 765, p 683–687CrossRef J.P. Li, P. Wang, Y.C. Guo et al., Microstructure and Microgalvanic Corrosion of an Extruded Mg-10Gd-2Y-0.5Zr Magnesium Alloy, Mater. Sci. Forum, 2013, 765, p 683–687CrossRef
27.
Zurück zum Zitat W.C. Neil, M. Forsyth, P.C. Howlett, C.R. Hutchinson, and B.R.W. Hinton, Corrosion of Magnesium Alloy ZE41—The Role of Microstructural Features, Corros. Sci., 2009, 51, p 387–394CrossRef W.C. Neil, M. Forsyth, P.C. Howlett, C.R. Hutchinson, and B.R.W. Hinton, Corrosion of Magnesium Alloy ZE41—The Role of Microstructural Features, Corros. Sci., 2009, 51, p 387–394CrossRef
28.
Zurück zum Zitat D.S. Gandel, M.A. Easton, M.A. Gibson, T. Abbott, and N. Birbilis, The Influence of Zirconium Additions on the Corrosion of Magnesium, Corros. Sci., 2014, 81, p 27–35CrossRef D.S. Gandel, M.A. Easton, M.A. Gibson, T. Abbott, and N. Birbilis, The Influence of Zirconium Additions on the Corrosion of Magnesium, Corros. Sci., 2014, 81, p 27–35CrossRef
29.
Zurück zum Zitat A. Fattah-alhosseini, M. Vakili-Azghandi, and M.K. Keshavarz, Influence of Concentrations of KOH and Na2SiO3 Electrolytes on the Electrochemical Behavior of Ceramic Coatings on 6061 Al Alloy Processed by Plasma Electrolytic Oxidation (PEO), Acta Metallurgica Sinica (Engl Lett), 2016, 29, p 274–281CrossRef A. Fattah-alhosseini, M. Vakili-Azghandi, and M.K. Keshavarz, Influence of Concentrations of KOH and Na2SiO3 Electrolytes on the Electrochemical Behavior of Ceramic Coatings on 6061 Al Alloy Processed by Plasma Electrolytic Oxidation (PEO), Acta Metallurgica Sinica (Engl Lett), 2016, 29, p 274–281CrossRef
30.
Zurück zum Zitat S. Vafaeian, A. Fattah-alhosseini, M.K. Keshavarz, and Y. Mazaheri, The Influence of Cyclic Voltammetry Passivation on the Electrochemical Behavior of Fine and Coarse-Grained AISI, 430 Ferritic Stainless Steel in an Alkaline Solution, J. Alloy. Compd., 2016, 677, p 42–51CrossRef S. Vafaeian, A. Fattah-alhosseini, M.K. Keshavarz, and Y. Mazaheri, The Influence of Cyclic Voltammetry Passivation on the Electrochemical Behavior of Fine and Coarse-Grained AISI, 430 Ferritic Stainless Steel in an Alkaline Solution, J. Alloy. Compd., 2016, 677, p 42–51CrossRef
31.
Zurück zum Zitat A. Fattah-alhosseini and M. Sabaghi, Joni, Effect of Immersion Time on the Electrochemical Behaviour of AZ31B Alloy, J. Alloy. Compd., 2015, 646, p 685–691CrossRef A. Fattah-alhosseini and M. Sabaghi, Joni, Effect of Immersion Time on the Electrochemical Behaviour of AZ31B Alloy, J. Alloy. Compd., 2015, 646, p 685–691CrossRef
32.
Zurück zum Zitat S.J. Xia, R. Yue, R.G. Rateick, Jr., and V.I. Birss, Electrochemical Studies of AC/DC Anodized Mg Alloy in NaCl Solution, J. Electrochem. Soc., 2004, 151, p B179–B187CrossRef S.J. Xia, R. Yue, R.G. Rateick, Jr., and V.I. Birss, Electrochemical Studies of AC/DC Anodized Mg Alloy in NaCl Solution, J. Electrochem. Soc., 2004, 151, p B179–B187CrossRef
33.
Zurück zum Zitat F.F. Eliyan and A. Alfantazi, Corrosion of the Heat-Affected Zones (HAZs) of API-X100 Pipeline Steel In Dilute Bicarbonate Solutions at 90 C—An Electrochemical Evaluation, Corros. Sci., 2013, 74, p 297–307CrossRef F.F. Eliyan and A. Alfantazi, Corrosion of the Heat-Affected Zones (HAZs) of API-X100 Pipeline Steel In Dilute Bicarbonate Solutions at 90 C—An Electrochemical Evaluation, Corros. Sci., 2013, 74, p 297–307CrossRef
34.
Zurück zum Zitat X. Ma, Q. Jiang, Y. Li, and B.R. Hou, Effect of Heat Treatment on Corrosion Behaviors of Mg-5Y-1.5Nd Alloys, Int. J. Electrochem., 2016, 2016, p 1–9CrossRef X. Ma, Q. Jiang, Y. Li, and B.R. Hou, Effect of Heat Treatment on Corrosion Behaviors of Mg-5Y-1.5Nd Alloys, Int. J. Electrochem., 2016, 2016, p 1–9CrossRef
35.
Zurück zum Zitat G.L. Song, Recent progress in corrosion and protection of magnesium alloys, Adv. Eng. Mater., 2005, 7, p 563–586CrossRef G.L. Song, Recent progress in corrosion and protection of magnesium alloys, Adv. Eng. Mater., 2005, 7, p 563–586CrossRef
Metadaten
Titel
Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X Na3PO4 + Y Na2HPO4) Using Electrochemical Impedance Spectroscopy and Mott–Schottky Techniques
verfasst von
Arash Fattah-alhosseini
Hamed Asgari
Publikationsdatum
16.05.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3414-7

Weitere Artikel der Ausgabe 7/2018

Journal of Materials Engineering and Performance 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.