Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2018

11.06.2018

Electrochemical Corrosion and In vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid

verfasst von: A. Madhan Kumar, S. Fida Hassan, Ahmad A. Sorour, M. Paramsothy, M. Gupta

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this present investigation, AZ31 alloy nanocomposite was prepared with the inclusion of Al2O3 nanoparticles using innovative disintegrated melt deposition (DMD) process followed by hot extrusion to improve the corrosion resistance and in vitro biocompatibility in simulated body fluid (SBF). This investigation systematically inspected the degradation performances of AZ31 alloy with Al2O3 nanoparticles through hydrogen evolution, weight loss and electrochemical methods in SBF. Further, the surface microstructure with the in vitro mineralization of the alloys in SBF was characterized by XRD, XPS, and SEM/EDS analysis. It was seen that the addition of Al2O3 nanoparticles significantly decreased the weight loss of AZ31 alloy substrates after 336 h of exposure in SBF. The corrosion resistance of the monolithic and nanocomposite samples was evaluated using potentiodynamic polarization tests, electrochemical impedance spectroscopy measurements in short- and long-term periods. Accordingly, the electrochemical analysis in SBF showed that the corrosion resistance performance of the AZ31 alloy enhanced considerably due to the incorporation of Al2O3 nanoparticles as reinforcement. Moreover, the rapid formation of bone-like apatite layer on the surface of the nanocomposite substrate demonstrated a good bioactivity of the nanocomposite samples in SBF.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Radha and D. Sreekanth, Insight of Magnesium Alloys and Composites for Orthopedic Implant Applications—A Review, J. Mag. Alloys, 2017, 5, p 286-312CrossRef R. Radha and D. Sreekanth, Insight of Magnesium Alloys and Composites for Orthopedic Implant Applications—A Review, J. Mag. Alloys, 2017, 5, p 286-312CrossRef
2.
Zurück zum Zitat X. Li, X. Liu, S. Wu, K.W.K. Yeung, Y. Zheng, and P.K. Chu, Design of Magnesium Alloys with Controllable Degradation for Biomedical Implants: from Bulk to Surface, Acta Biomater., 2016, 45, p 2-30CrossRef X. Li, X. Liu, S. Wu, K.W.K. Yeung, Y. Zheng, and P.K. Chu, Design of Magnesium Alloys with Controllable Degradation for Biomedical Implants: from Bulk to Surface, Acta Biomater., 2016, 45, p 2-30CrossRef
3.
Zurück zum Zitat S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications, Mater. Sci. Eng. C, 2016, 68, p 948-963CrossRef S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications, Mater. Sci. Eng. C, 2016, 68, p 948-963CrossRef
4.
Zurück zum Zitat M. Gupta and W.L.E. Wong, Magnesium-Based Nanocomposite: Lightweight Materials of the Future, Mater. Character., 2015, 105, p 30-46CrossRef M. Gupta and W.L.E. Wong, Magnesium-Based Nanocomposite: Lightweight Materials of the Future, Mater. Character., 2015, 105, p 30-46CrossRef
5.
6.
Zurück zum Zitat M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain, and J. She, Enhanced Tensile Properties of Magnesium Composites Reinforced with Graphene Nanoplatelets, Mater. Sci. Eng. A, 2015, 630, p 36-44CrossRef M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain, and J. She, Enhanced Tensile Properties of Magnesium Composites Reinforced with Graphene Nanoplatelets, Mater. Sci. Eng. A, 2015, 630, p 36-44CrossRef
7.
Zurück zum Zitat M. Paramsothy, S.F. Hassan, N. Srikanth, and M. Gupta, Simultaneous Enhancement of Tensile/Compressive Strength and Ductility of Magnesium Alloy AZ31 Using Carbon Nanotubes, J. Nanosci. Nanotechnol., 2010, 10(2), p 956-964CrossRef M. Paramsothy, S.F. Hassan, N. Srikanth, and M. Gupta, Simultaneous Enhancement of Tensile/Compressive Strength and Ductility of Magnesium Alloy AZ31 Using Carbon Nanotubes, J. Nanosci. Nanotechnol., 2010, 10(2), p 956-964CrossRef
8.
Zurück zum Zitat H.Z. Ye and X.Y. Liu, Review of Recent Studies in Magnesium Matrix Composites, J. Mater. Sci., 2004, 9, p 6153-6171CrossRef H.Z. Ye and X.Y. Liu, Review of Recent Studies in Magnesium Matrix Composites, J. Mater. Sci., 2004, 9, p 6153-6171CrossRef
9.
Zurück zum Zitat M. Mouni, M. Pavese, C. Badini, W. Lefebvre, and H. Diering, Reactivity and Microstructure of Al2O3-Reinforced Magnesium-Matrix Composites, Adv. Mater. Sci. Eng., 2014, 476079, p 1-6CrossRef M. Mouni, M. Pavese, C. Badini, W. Lefebvre, and H. Diering, Reactivity and Microstructure of Al2O3-Reinforced Magnesium-Matrix Composites, Adv. Mater. Sci. Eng., 2014, 476079, p 1-6CrossRef
10.
Zurück zum Zitat H.L. Shi, X.J. Wang, C.L. Zhang, C.D. Li, C. Ding, K. Wu, and X.S. Hu, A Novel Melt Processing for Mg Matrix Composites Reinforced by Multiwalled Carbon Nanotubes, J. Mater. Sci. Technol., 2016, 32, p 1303-1308CrossRef H.L. Shi, X.J. Wang, C.L. Zhang, C.D. Li, C. Ding, K. Wu, and X.S. Hu, A Novel Melt Processing for Mg Matrix Composites Reinforced by Multiwalled Carbon Nanotubes, J. Mater. Sci. Technol., 2016, 32, p 1303-1308CrossRef
11.
Zurück zum Zitat M. Paramsothy, S.F. Hassan, N. Srikanth, and M. Gupta, Enhancing Tensile/Compressive Response of Magnesium Alloy AZ31 by Integrating with Al2O3 Nanoparticles, Mater. Sci. Eng. A, 2009, 527, p 162-168CrossRef M. Paramsothy, S.F. Hassan, N. Srikanth, and M. Gupta, Enhancing Tensile/Compressive Response of Magnesium Alloy AZ31 by Integrating with Al2O3 Nanoparticles, Mater. Sci. Eng. A, 2009, 527, p 162-168CrossRef
12.
Zurück zum Zitat S.F. Hassan and M. Gupta, Effect of Length Scale of Al2O3 Particulates on Microstructural and Tensile Properties Of Elemental Mg, Mater. Sci. Eng. A, 2006, 425, p 22-27CrossRef S.F. Hassan and M. Gupta, Effect of Length Scale of Al2O3 Particulates on Microstructural and Tensile Properties Of Elemental Mg, Mater. Sci. Eng. A, 2006, 425, p 22-27CrossRef
13.
Zurück zum Zitat Q.B. Nguyen and M. Gupta, Increasing Significantly the Failure Strain and Work of Fracture of Solidification Processed AZ3IB Using Nano-A’203 Particulates, J. Alloys Compd., 2008, 459, p 244-250CrossRef Q.B. Nguyen and M. Gupta, Increasing Significantly the Failure Strain and Work of Fracture of Solidification Processed AZ3IB Using Nano-A’203 Particulates, J. Alloys Compd., 2008, 459, p 244-250CrossRef
14.
Zurück zum Zitat M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L.G. Johansson, Fundamentals and Advances in Magnesium Alloy Corrosion, Prog. Mater Sci., 2017, 89, p 92-193CrossRef M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L.G. Johansson, Fundamentals and Advances in Magnesium Alloy Corrosion, Prog. Mater Sci., 2017, 89, p 92-193CrossRef
15.
Zurück zum Zitat G.L. Song, A. Atrens, and D. St John, A Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys. In: Magnesium technology. Wiley, 2001. p. 254-62 G.L. Song, A. Atrens, and D. St John, A Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys. In: Magnesium technology. Wiley, 2001. p. 254-62
16.
Zurück zum Zitat S. Feliu and I. Llorente, Corrosion Product Layers on Magnesium Alloys AZ31 and AZ61: Surface Chemistry and Protective Ability, Appl. Surf. Sci., 2015, 347, p 736-746CrossRef S. Feliu and I. Llorente, Corrosion Product Layers on Magnesium Alloys AZ31 and AZ61: Surface Chemistry and Protective Ability, Appl. Surf. Sci., 2015, 347, p 736-746CrossRef
17.
Zurück zum Zitat G. Baril, G. Galicia, C. Deslouis, N. Pebere, B. Tribollet, and V. Vivier, An Impedance Investigation of the Mechanism of Pure Magnesium Corrosion in Sodium Sulfate Solutions, J. Electrochem. Soc., 2007, 154, p C108-C113CrossRef G. Baril, G. Galicia, C. Deslouis, N. Pebere, B. Tribollet, and V. Vivier, An Impedance Investigation of the Mechanism of Pure Magnesium Corrosion in Sodium Sulfate Solutions, J. Electrochem. Soc., 2007, 154, p C108-C113CrossRef
18.
Zurück zum Zitat G. Baril and N. Pébère, Corrosion of Pure Magnesium in Aerated and Deaerated Sodium Sulphate Solutions, Corros. Sci., 2001, 43, p 471-484CrossRef G. Baril and N. Pébère, Corrosion of Pure Magnesium in Aerated and Deaerated Sodium Sulphate Solutions, Corros. Sci., 2001, 43, p 471-484CrossRef
19.
Zurück zum Zitat R. Rettig and S. Virtanen, Time-Dependent Electrochemical Characterization of the Corrosion of a Magnesium Rare-Earth Alloy in Simulated Body Fluids, J. Biomed. Mater. Res. Part A, 2008, 85, p 167-175CrossRef R. Rettig and S. Virtanen, Time-Dependent Electrochemical Characterization of the Corrosion of a Magnesium Rare-Earth Alloy in Simulated Body Fluids, J. Biomed. Mater. Res. Part A, 2008, 85, p 167-175CrossRef
20.
Zurück zum Zitat F. Zucchi, V. Grassi, A. Frignani, C. Monticelli, and G. Trabanelli, Electrochemical Behaviour of a Magnesium Alloy Containing Rare Earth Elements, J. Appl. Electrochem., 2006, 36, p 195-204CrossRef F. Zucchi, V. Grassi, A. Frignani, C. Monticelli, and G. Trabanelli, Electrochemical Behaviour of a Magnesium Alloy Containing Rare Earth Elements, J. Appl. Electrochem., 2006, 36, p 195-204CrossRef
21.
Zurück zum Zitat N. Pebere, C. Riera, and F. Dabosi, Investigation of Magnesium Corrosion in Aerated Sodium Sulfate Solution by Electrochemical Impedance Spectroscopy, Electrochim. Acta, 1990, 35, p 555-561CrossRef N. Pebere, C. Riera, and F. Dabosi, Investigation of Magnesium Corrosion in Aerated Sodium Sulfate Solution by Electrochemical Impedance Spectroscopy, Electrochim. Acta, 1990, 35, p 555-561CrossRef
22.
Zurück zum Zitat J. Zhang, C. Dai, J. Wei, Z. Wen, S. Zhang, and C. Chen, Degradable Behavior and Bioactivity Of Micro-Arc Oxidized AZ91D Mg Alloy With Calcium Phosphate/Chitosan Composite Coating in m-SBF, Colloids Surf. B, 2013, 111, p 179-187CrossRef J. Zhang, C. Dai, J. Wei, Z. Wen, S. Zhang, and C. Chen, Degradable Behavior and Bioactivity Of Micro-Arc Oxidized AZ91D Mg Alloy With Calcium Phosphate/Chitosan Composite Coating in m-SBF, Colloids Surf. B, 2013, 111, p 179-187CrossRef
23.
Zurück zum Zitat P. Shi, B. Niu, E. Shanshan, Y. Chen, and Q. Li, Preparation and Characterization of PLA Coating and PLA/MAO Composite Coatings on AZ31 Magnesium Alloy for Improvement of Corrosion Resistance, Surf. Coat. Technol., 2015, 262, p 26-32CrossRef P. Shi, B. Niu, E. Shanshan, Y. Chen, and Q. Li, Preparation and Characterization of PLA Coating and PLA/MAO Composite Coatings on AZ31 Magnesium Alloy for Improvement of Corrosion Resistance, Surf. Coat. Technol., 2015, 262, p 26-32CrossRef
24.
Zurück zum Zitat J. Jayaraj, S.A. Raj, A. Srinivasan, S. Ananthakumar, U.T.S. Pillai, N.G.K. Dhaipul, and U.K. Mudali, Composite Magnesium Phosphate Coatings for Improved Corrosion Resistance of Magnesium AZ31 Alloy, Corros. Sci., 2016, 113, p 104-115CrossRef J. Jayaraj, S.A. Raj, A. Srinivasan, S. Ananthakumar, U.T.S. Pillai, N.G.K. Dhaipul, and U.K. Mudali, Composite Magnesium Phosphate Coatings for Improved Corrosion Resistance of Magnesium AZ31 Alloy, Corros. Sci., 2016, 113, p 104-115CrossRef
25.
Zurück zum Zitat Y. Song, D. Shan, R. Chen, and E.-H. Han, Corrosion Characterization of Mg-8Li Alloy in NaCl Solution, Corros. Sci., 2009, 51, p 1087-1094CrossRef Y. Song, D. Shan, R. Chen, and E.-H. Han, Corrosion Characterization of Mg-8Li Alloy in NaCl Solution, Corros. Sci., 2009, 51, p 1087-1094CrossRef
26.
Zurück zum Zitat M. Ascencio, M. Pekguleryuz, and S. Omanovic, An Investigation of the Corrosion Mechanisms of WE43Mg Alloy in a Modified Simulated Body Fluid Solution: The Influence of Immersion Time, Corros. Sci., 2014, 87, p 489-503CrossRef M. Ascencio, M. Pekguleryuz, and S. Omanovic, An Investigation of the Corrosion Mechanisms of WE43Mg Alloy in a Modified Simulated Body Fluid Solution: The Influence of Immersion Time, Corros. Sci., 2014, 87, p 489-503CrossRef
27.
Zurück zum Zitat Y.C. Xin, Corrosion Behavior of Biomedical AZ91 Magnesium Alloy in Simulated Body Fluids, J. Mater. Res., 2007, 22, p 2004-2011CrossRef Y.C. Xin, Corrosion Behavior of Biomedical AZ91 Magnesium Alloy in Simulated Body Fluids, J. Mater. Res., 2007, 22, p 2004-2011CrossRef
28.
Zurück zum Zitat G. Baril, G. Galicia, C. Deslouis, N. Pebere, B. Tribollet, and V. Vivier, An Impedance Investigation of the Mechanism of Pure Magnesium Corrosion in Sodium Sulfate Solutions, J. Electrochem. Soc., 2007, 154, p C108-C113CrossRef G. Baril, G. Galicia, C. Deslouis, N. Pebere, B. Tribollet, and V. Vivier, An Impedance Investigation of the Mechanism of Pure Magnesium Corrosion in Sodium Sulfate Solutions, J. Electrochem. Soc., 2007, 154, p C108-C113CrossRef
29.
Zurück zum Zitat T.R. Thomaz, C.R. Weber, T. Pelegrini, Jr., L.F.P. Dick, and G. Knörnschild, The Negative Difference Effect of Magnesium and of the AZ91 Alloy in Chloride and Stannate-Containing Solutions, Corros. Sci., 2010, 52, p 2235-2243CrossRef T.R. Thomaz, C.R. Weber, T. Pelegrini, Jr., L.F.P. Dick, and G. Knörnschild, The Negative Difference Effect of Magnesium and of the AZ91 Alloy in Chloride and Stannate-Containing Solutions, Corros. Sci., 2010, 52, p 2235-2243CrossRef
30.
Zurück zum Zitat Y.R. Chu and C.S. Lin, Citrate Gel Conversion Coating on AZ31 Magnesium Alloys, Corros. Sci., 2014, 87, p 288-296CrossRef Y.R. Chu and C.S. Lin, Citrate Gel Conversion Coating on AZ31 Magnesium Alloys, Corros. Sci., 2014, 87, p 288-296CrossRef
31.
Zurück zum Zitat M.C. Zhao, P. Schmutz, S. Brunner, M. Liu, G.L. Song, and A. Atrens, An Exploratory Study of the Corrosion of Mg Alloys During Interrupted Salt Spray Testing, Corros. Sci., 2009, 51, p 1277-1292CrossRef M.C. Zhao, P. Schmutz, S. Brunner, M. Liu, G.L. Song, and A. Atrens, An Exploratory Study of the Corrosion of Mg Alloys During Interrupted Salt Spray Testing, Corros. Sci., 2009, 51, p 1277-1292CrossRef
32.
Zurück zum Zitat Y. Ren, H. Zhou, M. Nabiyouni, and S.B. Bhaduri, Rapid Coating of AZ31 Magnesium Alloy with Calcium Deficient Hydroxyapatite Using Microwave Energy, Mater. Sci. Eng. C, 2015, 49, p 364-372CrossRef Y. Ren, H. Zhou, M. Nabiyouni, and S.B. Bhaduri, Rapid Coating of AZ31 Magnesium Alloy with Calcium Deficient Hydroxyapatite Using Microwave Energy, Mater. Sci. Eng. C, 2015, 49, p 364-372CrossRef
33.
Zurück zum Zitat J. Zhang, C. Xu, Y. Jing, S. Lv, S. Liu, D. Fang, J. Zhuang, M. Zhang, and R. Wu, New Horizon For High Performance Mg Based Biomaterial with Uniform Degradation Behavior: Formation of Stacking Faults, Sci. Rep., 2015, 5, p 13933CrossRef J. Zhang, C. Xu, Y. Jing, S. Lv, S. Liu, D. Fang, J. Zhuang, M. Zhang, and R. Wu, New Horizon For High Performance Mg Based Biomaterial with Uniform Degradation Behavior: Formation of Stacking Faults, Sci. Rep., 2015, 5, p 13933CrossRef
Metadaten
Titel
Electrochemical Corrosion and In vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid
verfasst von
A. Madhan Kumar
S. Fida Hassan
Ahmad A. Sorour
M. Paramsothy
M. Gupta
Publikationsdatum
11.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3448-x

Weitere Artikel der Ausgabe 7/2018

Journal of Materials Engineering and Performance 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.