Skip to main content
Erschienen in: Journal of Materials Science 1/2016

15.09.2015 | 50th Anniversary

Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds

verfasst von: Ali Reza Kamali, Derek Fray

Erschienen in: Journal of Materials Science | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The electrochemical interaction between graphite and molten salts to produce carbon nanostructures is reviewed. It is demonstrated that, depending on the conditions, it is possible to electrochemically convert graphite in molten salts to either carbon nanoparticles and nanotubes, metal-filled carbon nanoparticles and nanotubes, graphene or nanodiamonds. The application of metal-filled carbon nanotubes as anodes in lithium-ion batteries is reviewed. Surprisingly, this method of preparation is relatively simple and very similar to the mass production of aluminium in molten sodium aluminium fluoride–alumina mixtures, which is performed economically on a tonnage scale, indicating that it may be possible to apply it for the production of novel carbon nanostructures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Habashi F (ed) (1977) Handbook of extractive metallurgy. Wiley-VCH, Weinheim Habashi F (ed) (1977) Handbook of extractive metallurgy. Wiley-VCH, Weinheim
2.
Zurück zum Zitat Thonstad J, Fellner P, Haarberg GM, Hives J, Kvande H, Sterten A (2001) Aluminium electrolysis; fundamentals of the Hall-Heroult process. Aluminium-Verlag, Dusseldorf Thonstad J, Fellner P, Haarberg GM, Hives J, Kvande H, Sterten A (2001) Aluminium electrolysis; fundamentals of the Hall-Heroult process. Aluminium-Verlag, Dusseldorf
3.
Zurück zum Zitat Mikhalev Y, Oye HA (1996) Absorption of metallic sodium in cathode carbon materials. Carbon 34:37–41CrossRef Mikhalev Y, Oye HA (1996) Absorption of metallic sodium in cathode carbon materials. Carbon 34:37–41CrossRef
4.
Zurück zum Zitat Joseph TB, Sanil N, Mohandas KS, Nagarajan K (2015) Study of graphite as anode in the electro-deoxidation of solid UO2 in LiCl-Li2O melt. J Electrochem Soc 162:E51–E58CrossRef Joseph TB, Sanil N, Mohandas KS, Nagarajan K (2015) Study of graphite as anode in the electro-deoxidation of solid UO2 in LiCl-Li2O melt. J Electrochem Soc 162:E51–E58CrossRef
5.
Zurück zum Zitat Pal’yanov YN, Sokol AG, Borzdov YN, Khokhryakov AF, Sobolev NV (1999) Diamond formation from mantle carbonate fluids. Nature 400:417–418CrossRef Pal’yanov YN, Sokol AG, Borzdov YN, Khokhryakov AF, Sobolev NV (1999) Diamond formation from mantle carbonate fluids. Nature 400:417–418CrossRef
6.
Zurück zum Zitat Kamali AR, Divitini G, Schwandt C, Fray DJ (2012) Correlation between microstructure and thermokinetic characteristics of electrolytic carbon nanomaterials. Corros Sci 64:90–97CrossRef Kamali AR, Divitini G, Schwandt C, Fray DJ (2012) Correlation between microstructure and thermokinetic characteristics of electrolytic carbon nanomaterials. Corros Sci 64:90–97CrossRef
7.
Zurück zum Zitat Kamali AR, Fray DJ (2013) Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon 56:121–136CrossRef Kamali AR, Fray DJ (2013) Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon 56:121–136CrossRef
8.
Zurück zum Zitat He Z, Gao L, Wang X, Zhang B, Qi W, Song J et al (2014) Improvement of stacking order in graphite by molten fluoride salt infiltration. Carbon 72:304–311CrossRef He Z, Gao L, Wang X, Zhang B, Qi W, Song J et al (2014) Improvement of stacking order in graphite by molten fluoride salt infiltration. Carbon 72:304–311CrossRef
9.
Zurück zum Zitat Pal’yanov NV, Kupriyanov IN, Khokhryakov AF, Ralchenko VG (2001) Crystal growth of diamond, handbook of crystal growth: bulk crystal growth, 2nd edn. Elsevier, Amsterdam, pp 671–713 Pal’yanov NV, Kupriyanov IN, Khokhryakov AF, Ralchenko VG (2001) Crystal growth of diamond, handbook of crystal growth: bulk crystal growth, 2nd edn. Elsevier, Amsterdam, pp 671–713
10.
Zurück zum Zitat Tomlinson E, Jones A, Milledge J (2004) High-pressure experimental growth of diamond using C–K2CO3–KCl as an analogue for Cl-bearing carbonate fluid. Lithos 77:287–294CrossRef Tomlinson E, Jones A, Milledge J (2004) High-pressure experimental growth of diamond using C–K2CO3–KCl as an analogue for Cl-bearing carbonate fluid. Lithos 77:287–294CrossRef
11.
Zurück zum Zitat Hsu WK, Terrones M, Hare JP, Terrones H, Kroto HW, Walton DRM (1996) Electrolytic formation of carbon structures. Chem Phys Lett 262:161–166CrossRef Hsu WK, Terrones M, Hare JP, Terrones H, Kroto HW, Walton DRM (1996) Electrolytic formation of carbon structures. Chem Phys Lett 262:161–166CrossRef
12.
Zurück zum Zitat Chen GZ, Fan X, Luget A, Shaffer MSP, Fray DJ, Windle AH (1998) Electrolytic conversion of graphite to carbon nanotubes in molten salts. J Electroanal Chem 446(1–2):1–6 Chen GZ, Fan X, Luget A, Shaffer MSP, Fray DJ, Windle AH (1998) Electrolytic conversion of graphite to carbon nanotubes in molten salts. J Electroanal Chem 446(1–2):1–6
13.
Zurück zum Zitat Hsu WK, Li J, Terrones H, Terrones M, Grobert N, Zhu YQ, Trasobares S, Hare JP, Pickett CJ, Kroto HW, Walton DRM (1999) Electrochemical production of low melting metal nanowires. Chem Phys Lett 301:159–166CrossRef Hsu WK, Li J, Terrones H, Terrones M, Grobert N, Zhu YQ, Trasobares S, Hare JP, Pickett CJ, Kroto HW, Walton DRM (1999) Electrochemical production of low melting metal nanowires. Chem Phys Lett 301:159–166CrossRef
14.
Zurück zum Zitat Schwandt C, Dimitrov AT, Fray DJ (2010) The preparation of nano-structured carbon materials by electrolysis of molten lithium chloride at graphite electrodes. J Electroanal Chem 647:150–158CrossRef Schwandt C, Dimitrov AT, Fray DJ (2010) The preparation of nano-structured carbon materials by electrolysis of molten lithium chloride at graphite electrodes. J Electroanal Chem 647:150–158CrossRef
15.
Zurück zum Zitat Kamali AR, Schwandt C, Fray DJ (2011) Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials. Mater Charact 62:987–994CrossRef Kamali AR, Schwandt C, Fray DJ (2011) Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials. Mater Charact 62:987–994CrossRef
16.
Zurück zum Zitat Kamali AR, Fray DJ (2014) Towards large scale preparation of carbon nanostructures in molten LiCl. Carbon 77:835–845CrossRef Kamali AR, Fray DJ (2014) Towards large scale preparation of carbon nanostructures in molten LiCl. Carbon 77:835–845CrossRef
17.
Zurück zum Zitat Kinloch IA, Chen GZ, Howes J, Boothroyd C, Singh C, Fray DJ, Windle AH (2003) Electrolytic, TEM and Raman studies on the production of carbon nanotubes in molten NaCl. Carbon 41:1127–1141CrossRef Kinloch IA, Chen GZ, Howes J, Boothroyd C, Singh C, Fray DJ, Windle AH (2003) Electrolytic, TEM and Raman studies on the production of carbon nanotubes in molten NaCl. Carbon 41:1127–1141CrossRef
18.
Zurück zum Zitat Thackeray MM (1995) Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J Electrochem Soc 142:2558–2563CrossRef Thackeray MM (1995) Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J Electrochem Soc 142:2558–2563CrossRef
19.
Zurück zum Zitat Zavalis TG, Behm M, Lindbergh G (2012) Investigation of short circuit scenarios in lithium ion battery cell. J Electrochem Soc 159:A848–A859CrossRef Zavalis TG, Behm M, Lindbergh G (2012) Investigation of short circuit scenarios in lithium ion battery cell. J Electrochem Soc 159:A848–A859CrossRef
20.
Zurück zum Zitat Tarascon JM, Guyomard D (1991) Lithium metal free rechargeable batteries based upon Li1+xMn2O4 cathodes and carbon anodes. J Electrochem Soc 38:2864–2868CrossRef Tarascon JM, Guyomard D (1991) Lithium metal free rechargeable batteries based upon Li1+xMn2O4 cathodes and carbon anodes. J Electrochem Soc 38:2864–2868CrossRef
21.
Zurück zum Zitat Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and compounds. Electrochem Acta 145:31–50CrossRef Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and compounds. Electrochem Acta 145:31–50CrossRef
22.
Zurück zum Zitat Das Gupta R, Schwandt C, Fray DJ (2014) Preparation of tin filled carbon nanotubes and nanoparticles by molten salt electrolysis. Carbon 70:142–148CrossRef Das Gupta R, Schwandt C, Fray DJ (2014) Preparation of tin filled carbon nanotubes and nanoparticles by molten salt electrolysis. Carbon 70:142–148CrossRef
23.
Zurück zum Zitat Das Gupta R (2009) The electrochemical production of tin filled carbon nanotubes and their use as anode materials in lithium-ion batteries. Ph.D. Thesis, University of Cambridge Das Gupta R (2009) The electrochemical production of tin filled carbon nanotubes and their use as anode materials in lithium-ion batteries. Ph.D. Thesis, University of Cambridge
24.
Zurück zum Zitat Kamali AR, Fray DJ, Unpublished results Kamali AR, Fray DJ, Unpublished results
25.
Zurück zum Zitat Kamali AR, Fray DJ (2015) A possible scalable method for the synthesis of Sn-containing carbon nanostructures. Mater Today Commun 2:38–48CrossRef Kamali AR, Fray DJ (2015) A possible scalable method for the synthesis of Sn-containing carbon nanostructures. Mater Today Commun 2:38–48CrossRef
26.
Zurück zum Zitat Kamali AR, Fray DJ (2015) Large-scale preparation of graphene by high temperature insertion of hydrogen in graphite. Nanoscale 7:11310–11320CrossRef Kamali AR, Fray DJ (2015) Large-scale preparation of graphene by high temperature insertion of hydrogen in graphite. Nanoscale 7:11310–11320CrossRef
27.
Zurück zum Zitat Hou L, Lian L, Li D, Pang G, Li J, Zhang X, Xiong S, Yuan C (2013) Mesoporous N-containing carbon nanosheets towards high performance electrochemical capacitors. Carbon 64:141–149CrossRef Hou L, Lian L, Li D, Pang G, Li J, Zhang X, Xiong S, Yuan C (2013) Mesoporous N-containing carbon nanosheets towards high performance electrochemical capacitors. Carbon 64:141–149CrossRef
28.
Zurück zum Zitat Chen JC, Liu YQ, Li N, Wu C, Xu L, Yang H (2015) Nanostructured polystyrene/polyaniline/graphene hybrid materials for electrochemical supercapacitor and Na-ion battery applications. J Mater Sci 50:5466–5474. doi:10.1007/s10853-015-9092-z CrossRef Chen JC, Liu YQ, Li N, Wu C, Xu L, Yang H (2015) Nanostructured polystyrene/polyaniline/graphene hybrid materials for electrochemical supercapacitor and Na-ion battery applications. J Mater Sci 50:5466–5474. doi:10.​1007/​s10853-015-9092-z CrossRef
29.
Zurück zum Zitat Xian HY, PengTJ Sun HJ, Wang JD (2015) Preparation of graphene nanosheets from microcrystalline graphite by low-temperature exfoliated method and their supercapacitive behavior. J Mater Sci 50:4025–4033. doi:10.1007/s10853-015-8959-3 CrossRef Xian HY, PengTJ Sun HJ, Wang JD (2015) Preparation of graphene nanosheets from microcrystalline graphite by low-temperature exfoliated method and their supercapacitive behavior. J Mater Sci 50:4025–4033. doi:10.​1007/​s10853-015-8959-3 CrossRef
30.
Zurück zum Zitat Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053CrossRef Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053CrossRef
31.
Zurück zum Zitat Wang Z, Shoji M, Ogata H (2012) Synthesis and characterisation of platinum nanoparticles on carbon nanosheets with enhanced electrocatalytic activity toward methanol oxidation. App Surf Sci 259:219–224CrossRef Wang Z, Shoji M, Ogata H (2012) Synthesis and characterisation of platinum nanoparticles on carbon nanosheets with enhanced electrocatalytic activity toward methanol oxidation. App Surf Sci 259:219–224CrossRef
32.
Zurück zum Zitat Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef
33.
Zurück zum Zitat Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef
34.
Zurück zum Zitat Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340:1420CrossRef Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340:1420CrossRef
35.
Zurück zum Zitat Malesevic A, Vizireanu S, Kemps R, Vanhulsel A, Haesendonck CV, Dinescu G (2007) Combined growth of carbon nanotubes and carbon nanowalls by plasma-enhanced chemical vapour deposition. Carbon 45:2932–2937CrossRef Malesevic A, Vizireanu S, Kemps R, Vanhulsel A, Haesendonck CV, Dinescu G (2007) Combined growth of carbon nanotubes and carbon nanowalls by plasma-enhanced chemical vapour deposition. Carbon 45:2932–2937CrossRef
36.
Zurück zum Zitat Tanaike O, Kitada N, Yoshimura H, Hatori H, Kojima K, Tachibana M (2009) Lithium insertion behaviour of carbon nanowalls by dc plasma CVD and its heat: treatment effect. Solid State Ionics 180:381–385CrossRef Tanaike O, Kitada N, Yoshimura H, Hatori H, Kojima K, Tachibana M (2009) Lithium insertion behaviour of carbon nanowalls by dc plasma CVD and its heat: treatment effect. Solid State Ionics 180:381–385CrossRef
37.
Zurück zum Zitat Mori S, Veno T, Suzuki M (2011) Synthesis of carbon nanowalls by plasma-enhanced vapour deposition in a CO/H-2 microwave discharge system. Diam Relat Mater 20:1129–113215CrossRef Mori S, Veno T, Suzuki M (2011) Synthesis of carbon nanowalls by plasma-enhanced vapour deposition in a CO/H-2 microwave discharge system. Diam Relat Mater 20:1129–113215CrossRef
39.
Zurück zum Zitat Liu QX, Wang CX, Li SW, Zhang JX, Yang GW (2004) Nucleation stability of diamond nanowires inside carbon nanotubes: a thermodynamic approach. Carbon 42:629–633CrossRef Liu QX, Wang CX, Li SW, Zhang JX, Yang GW (2004) Nucleation stability of diamond nanowires inside carbon nanotubes: a thermodynamic approach. Carbon 42:629–633CrossRef
40.
Zurück zum Zitat Zhu YQ, Sekine T, Kobayashi T, Takazawa E, Terrones M, Terrones H (1998) Collapsing carbon nanotubes and diamond formation under shockwaves. Chem Phys Lett 287:689–693CrossRef Zhu YQ, Sekine T, Kobayashi T, Takazawa E, Terrones M, Terrones H (1998) Collapsing carbon nanotubes and diamond formation under shockwaves. Chem Phys Lett 287:689–693CrossRef
41.
Zurück zum Zitat Zhang F, Ahmed F, Holzhüter G, Burkel E (2012) Growth of diamond from fullerene C60 by spark plasma sintering. J Cryst Growth 340:1–5CrossRef Zhang F, Ahmed F, Holzhüter G, Burkel E (2012) Growth of diamond from fullerene C60 by spark plasma sintering. J Cryst Growth 340:1–5CrossRef
42.
Zurück zum Zitat Yusa H (2002) Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure. Diam Relat Mater 11:87–91CrossRef Yusa H (2002) Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure. Diam Relat Mater 11:87–91CrossRef
43.
Zurück zum Zitat Pal’yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Shatsky AF, Sobolev NV (1999) The diamond growth from Li2CO3, Na2CO3, K2CO3 and Cs2CO3 solvent at P = 7 GPa and T = 1700–1750 °C. Diam Relat Mater 8:1118–1124CrossRef Pal’yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Shatsky AF, Sobolev NV (1999) The diamond growth from Li2CO3, Na2CO3, K2CO3 and Cs2CO3 solvent at P = 7 GPa and T = 1700–1750 °C. Diam Relat Mater 8:1118–1124CrossRef
44.
Zurück zum Zitat Kamali AR, Fray DJ (2015) Preparation of nanodiamonds from carbon nanoparticles at atmospheric pressure. Chem Commun 51:5594–5597CrossRef Kamali AR, Fray DJ (2015) Preparation of nanodiamonds from carbon nanoparticles at atmospheric pressure. Chem Commun 51:5594–5597CrossRef
45.
Zurück zum Zitat Kamali AR, Schwandt C, Fray DJ (2012) On the oxidation of electrolytic carbon nanomaterials. Corros Sci 54:307–313CrossRef Kamali AR, Schwandt C, Fray DJ (2012) On the oxidation of electrolytic carbon nanomaterials. Corros Sci 54:307–313CrossRef
46.
Zurück zum Zitat House of Commons Environmental Audit Committee, Fourth Report of Session 2009–2010 The role of carbon materials in preventing dangerous climate change. The Stationary Office 2010 House of Commons Environmental Audit Committee, Fourth Report of Session 2009–2010 The role of carbon materials in preventing dangerous climate change. The Stationary Office 2010
Metadaten
Titel
Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds
verfasst von
Ali Reza Kamali
Derek Fray
Publikationsdatum
15.09.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 1/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9340-2

Weitere Artikel der Ausgabe 1/2016

Journal of Materials Science 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.