Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Electrochemical Sandwich Assays for Protein Detection

verfasst von : Hui Li, Shaoguang Li, Fan Xia

Erschienen in: Biosensors Based on Sandwich Assays

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rapid, sensitive, and selective detection of proteins biomarker plays a very important role in early diagnostics of diseases and global health. Toward this goal, numerous researchers have devoted great efforts to develop a variety of approaches for protein detections, among which electrochemical sandwich assay appears as a very promising one because their signaling mechanism between redox-active tags and electrode renders this approach to be highly sensitive and selective, rapid, miniaturizable, and cost-effective. As such, this electron communicating signal can be readily amplified by employing enzymatic catalyst reaction, metal nanoparticles, carbon-based nanomaterials, and many other strategies, in support to further improve the sensitivity of this sensing platform.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Smith RA, Cokkinides V, Brawley OW (2008) Cancer screening in the United States, 2008: a review of current American Cancer Society guidelines and cancer screening issues. CA Cancer J Clin 58:161–179CrossRef Smith RA, Cokkinides V, Brawley OW (2008) Cancer screening in the United States, 2008: a review of current American Cancer Society guidelines and cancer screening issues. CA Cancer J Clin 58:161–179CrossRef
2.
Zurück zum Zitat Dinarello CA (2007) Historical insights into cytokines. Eur J Immunol 37:S34–S45CrossRef Dinarello CA (2007) Historical insights into cytokines. Eur J Immunol 37:S34–S45CrossRef
3.
Zurück zum Zitat Rong Q, Feng F, Ma Z (2016) Metal ions doped chitosan-poly(acrylic acid) nanospheres: Synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer. Biosens Bioelectron 75:148–154CrossRef Rong Q, Feng F, Ma Z (2016) Metal ions doped chitosan-poly(acrylic acid) nanospheres: Synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer. Biosens Bioelectron 75:148–154CrossRef
4.
Zurück zum Zitat Shen J, Li Y, Gu H, Xia F, Zuo X (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 114:7631–7677CrossRef Shen J, Li Y, Gu H, Xia F, Zuo X (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 114:7631–7677CrossRef
5.
Zurück zum Zitat Bonham AJ, Hsieh K, Ferguson BS, Vallee-Belisle A, Ricci F, Soh HT, Plaxco KW (2012) Quantification of transcription factor binding in cell extracts using an electrochemical, structure-switching biosensor. J Am Chem Soc 134:3346–3348CrossRef Bonham AJ, Hsieh K, Ferguson BS, Vallee-Belisle A, Ricci F, Soh HT, Plaxco KW (2012) Quantification of transcription factor binding in cell extracts using an electrochemical, structure-switching biosensor. J Am Chem Soc 134:3346–3348CrossRef
6.
Zurück zum Zitat Guiseppi-Elie A, Lingerfelt L (2005) Impedimetric detection of DNA hybridization: towards near-patient DNA diagnostics. Top Curr Chem 260:161–186CrossRef Guiseppi-Elie A, Lingerfelt L (2005) Impedimetric detection of DNA hybridization: towards near-patient DNA diagnostics. Top Curr Chem 260:161–186CrossRef
7.
Zurück zum Zitat Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8:1400–1458CrossRef Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8:1400–1458CrossRef
8.
Zurück zum Zitat Ren KW, Wu J, Yan F, Zhang Y, Ju HX (2015) Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker. Biosens Bioelectron 66:345–349CrossRef Ren KW, Wu J, Yan F, Zhang Y, Ju HX (2015) Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker. Biosens Bioelectron 66:345–349CrossRef
9.
Zurück zum Zitat Feng LN, Bian ZP, Peng J, Jiang F, Yang GH, Zhu YD, Yang D, Jiang LP, Zhu JJ (2012) Ultrasensitive multianalyte electrochemical immunoassay based on metal ion functionalized titanium phosphate nanospheres. Anal Chem 84:7810–7815CrossRef Feng LN, Bian ZP, Peng J, Jiang F, Yang GH, Zhu YD, Yang D, Jiang LP, Zhu JJ (2012) Ultrasensitive multianalyte electrochemical immunoassay based on metal ion functionalized titanium phosphate nanospheres. Anal Chem 84:7810–7815CrossRef
10.
Zurück zum Zitat Solanki PR, Patel MK, Ali MA, Malhotra BD (2015) A chitosan modified nickel oxide platform for biosensing applications. J Mater Chem B 3:6698–6708CrossRef Solanki PR, Patel MK, Ali MA, Malhotra BD (2015) A chitosan modified nickel oxide platform for biosensing applications. J Mater Chem B 3:6698–6708CrossRef
11.
Zurück zum Zitat Zuo XL, Xiao Y, Plaxco KW (2009) High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J Am Chem Soc 131:6944–6945CrossRef Zuo XL, Xiao Y, Plaxco KW (2009) High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J Am Chem Soc 131:6944–6945CrossRef
12.
Zurück zum Zitat Yang H (2012) Enzyme-based ultrasensitive electrochemical biosensors. Curr Opin Chem Biol 16:422–428CrossRef Yang H (2012) Enzyme-based ultrasensitive electrochemical biosensors. Curr Opin Chem Biol 16:422–428CrossRef
13.
Zurück zum Zitat Akanda MR, Aziz MA, Jo K, Tamilavan V, Hyun MH, Kim S, Yang H (2011) Optimization of phosphatase- and redox cycling-based immunosensors and its application to ultrasensitive detection of troponin I. Anal Chem 83:3926–3933CrossRef Akanda MR, Aziz MA, Jo K, Tamilavan V, Hyun MH, Kim S, Yang H (2011) Optimization of phosphatase- and redox cycling-based immunosensors and its application to ultrasensitive detection of troponin I. Anal Chem 83:3926–3933CrossRef
14.
Zurück zum Zitat Du D, Wang LM, Shao YY, Wang J, Engelhard MH, Lin YH (2011) Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Anal Chem 83:746–752CrossRef Du D, Wang LM, Shao YY, Wang J, Engelhard MH, Lin YH (2011) Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Anal Chem 83:746–752CrossRef
15.
Zurück zum Zitat Khalilzadeh B, Shadjou N, Eskandani M, Charoudeh HN, Omidi Y, Rashidi M-R (2015) A reliable self-assembled peptide based electrochemical biosensor for detection of caspase 3 activity and apoptosis. RSC Adv 5:58316–58326CrossRef Khalilzadeh B, Shadjou N, Eskandani M, Charoudeh HN, Omidi Y, Rashidi M-R (2015) A reliable self-assembled peptide based electrochemical biosensor for detection of caspase 3 activity and apoptosis. RSC Adv 5:58316–58326CrossRef
16.
Zurück zum Zitat Zhao Y, Zheng YQ, Kong RM, Xia L, Qu FL (2016) Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection. Biosens Bioelectron 75:383–388CrossRef Zhao Y, Zheng YQ, Kong RM, Xia L, Qu FL (2016) Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection. Biosens Bioelectron 75:383–388CrossRef
17.
Zurück zum Zitat Rusling JF, Bishop GW, Doan NM, Papadimitrakopoulos F (2014) Nanomaterials and biomaterials in electrochemical arrays for protein detection. J Mater Chem B 2:12–30CrossRef Rusling JF, Bishop GW, Doan NM, Papadimitrakopoulos F (2014) Nanomaterials and biomaterials in electrochemical arrays for protein detection. J Mater Chem B 2:12–30CrossRef
18.
Zurück zum Zitat Qin XL, Liu L, Xu AG, Wang LC, Tan YM, Chen C, Xie QJ (2016) Ultrasensitive immunoassay of proteins based on gold label/silver staining, galvanic replacement reaction enlargement, and in situ microliter-droplet anodic stripping voltammetry. J Phys Chem C 120:2855–2865CrossRef Qin XL, Liu L, Xu AG, Wang LC, Tan YM, Chen C, Xie QJ (2016) Ultrasensitive immunoassay of proteins based on gold label/silver staining, galvanic replacement reaction enlargement, and in situ microliter-droplet anodic stripping voltammetry. J Phys Chem C 120:2855–2865CrossRef
19.
Zurück zum Zitat Peng J, Feng LN, Ren ZJ, Jiang LP, Zhu JJ (2011) Synthesis of silver nanoparticle-hollow titanium phosphate sphere hybrid as a label for ultrasensitive electrochemical detection of human interleukin-6. Small 7:2921–2928CrossRef Peng J, Feng LN, Ren ZJ, Jiang LP, Zhu JJ (2011) Synthesis of silver nanoparticle-hollow titanium phosphate sphere hybrid as a label for ultrasensitive electrochemical detection of human interleukin-6. Small 7:2921–2928CrossRef
20.
Zurück zum Zitat Kong FY, Xu BY, Xu JJ, Chen HY (2013) Simultaneous electrochemical immunoassay using CdS/DNA and PbS/DNA nanochains as labels. Biosens Bioelectron 39:177–182CrossRef Kong FY, Xu BY, Xu JJ, Chen HY (2013) Simultaneous electrochemical immunoassay using CdS/DNA and PbS/DNA nanochains as labels. Biosens Bioelectron 39:177–182CrossRef
21.
Zurück zum Zitat You M, Yang SA, Tang WX, Zhang F, He PG (2017) Ultrasensitive electrochemical detection of glycoprotein based on boronate affinity sandwich assay and signal amplification with functionalized SiO2@Au nanocomposites. ACS Appl Mater Interfaces 9:13855–13864CrossRef You M, Yang SA, Tang WX, Zhang F, He PG (2017) Ultrasensitive electrochemical detection of glycoprotein based on boronate affinity sandwich assay and signal amplification with functionalized SiO2@Au nanocomposites. ACS Appl Mater Interfaces 9:13855–13864CrossRef
22.
Zurück zum Zitat Wang ZF, Liu N, Ma ZF (2014) Platinum porous nanoparticles hybrid with metal ions as probes for simultaneous detection of multiplex cancer biomarkers. Biosens Bioelectron 53:324–329CrossRef Wang ZF, Liu N, Ma ZF (2014) Platinum porous nanoparticles hybrid with metal ions as probes for simultaneous detection of multiplex cancer biomarkers. Biosens Bioelectron 53:324–329CrossRef
23.
Zurück zum Zitat Tang ZX, Ma ZF (2016) Ratiometric ultrasensitive electrochemical immunosensor based on redox substrate and immunoprobe. Sci Rep 6:35440CrossRef Tang ZX, Ma ZF (2016) Ratiometric ultrasensitive electrochemical immunosensor based on redox substrate and immunoprobe. Sci Rep 6:35440CrossRef
24.
Zurück zum Zitat Das J, Aziz MA, Yang H (2006) A Nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. J Am Chem Soc 128:16022–16023CrossRef Das J, Aziz MA, Yang H (2006) A Nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. J Am Chem Soc 128:16022–16023CrossRef
25.
Zurück zum Zitat Cui ZT, Wu D, Zhang Y, Ma HM, Li H, Du B, Wei Q, Ju HX (2014) Ultrasensitive electrochemical immunosensors for multiplexed determination using mesoporous platinum nanoparticles as nonenzymatic labels. Anal Chim Acta 807:44–50CrossRef Cui ZT, Wu D, Zhang Y, Ma HM, Li H, Du B, Wei Q, Ju HX (2014) Ultrasensitive electrochemical immunosensors for multiplexed determination using mesoporous platinum nanoparticles as nonenzymatic labels. Anal Chim Acta 807:44–50CrossRef
26.
Zurück zum Zitat Xu QN, Wang LS, Lei JP, Deng SY, Ju HX (2013) Platinum nanodendrite functionalized graphene nanosheets as a non-enzymatic label for electrochemical immunosensing. J Mater Chem B 1:5347–5352CrossRef Xu QN, Wang LS, Lei JP, Deng SY, Ju HX (2013) Platinum nanodendrite functionalized graphene nanosheets as a non-enzymatic label for electrochemical immunosensing. J Mater Chem B 1:5347–5352CrossRef
27.
Zurück zum Zitat Tang J, Zhou J, Li Q, Tang D, Chen G, Yang H (2013) In situ amplified electronic signal for determination of low-abundance proteins coupling with nanocatalyst-based redox cycling. Chem Commun 49:1530–1532CrossRef Tang J, Zhou J, Li Q, Tang D, Chen G, Yang H (2013) In situ amplified electronic signal for determination of low-abundance proteins coupling with nanocatalyst-based redox cycling. Chem Commun 49:1530–1532CrossRef
28.
Zurück zum Zitat Fu XH, Huang R, Wang JX, Feng XR (2013) Platinum nanoflower-based catalysts for an enzyme-free electrochemical immunoassay of neuron-specific enolase. Anal Methods 5:3803–3806CrossRef Fu XH, Huang R, Wang JX, Feng XR (2013) Platinum nanoflower-based catalysts for an enzyme-free electrochemical immunoassay of neuron-specific enolase. Anal Methods 5:3803–3806CrossRef
29.
Zurück zum Zitat Zhang J, Ting BP, Khan M, Pearce MC, Yang YY, Gao ZQ, Ying JY (2010) Pt nanoparticle label-mediated deposition of Pt catalyst for ultrasensitive electrochemical immunosensors. Biosens Bioelectron 26:418–423CrossRef Zhang J, Ting BP, Khan M, Pearce MC, Yang YY, Gao ZQ, Ying JY (2010) Pt nanoparticle label-mediated deposition of Pt catalyst for ultrasensitive electrochemical immunosensors. Biosens Bioelectron 26:418–423CrossRef
30.
Zurück zum Zitat Spain E, Gilgunn S, Sharma S, Adamson K, Carthy E, O’Kennedy R, Forster RJ (2016) Detection of prostate specific antigen based on electrocatalytic platinum nanoparticles conjugated to a recombinant scFv antibody. Biosens Bioelectron 77:759–766CrossRef Spain E, Gilgunn S, Sharma S, Adamson K, Carthy E, O’Kennedy R, Forster RJ (2016) Detection of prostate specific antigen based on electrocatalytic platinum nanoparticles conjugated to a recombinant scFv antibody. Biosens Bioelectron 77:759–766CrossRef
31.
Zurück zum Zitat Tiwari JN, Vij V, Kemp KC, Kim KS (2016) Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 10:46–80CrossRef Tiwari JN, Vij V, Kemp KC, Kim KS (2016) Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 10:46–80CrossRef
32.
Zurück zum Zitat Lai GS, Zhang HL, Yong J, Yu AM (2013) In situ deposition of gold nanoparticles on polydopamine functionalized silica nanosphere for ultrasensitive nonenzymatic electrochemical immunoassay. Biosens Bioelectron 47:178–183CrossRef Lai GS, Zhang HL, Yong J, Yu AM (2013) In situ deposition of gold nanoparticles on polydopamine functionalized silica nanosphere for ultrasensitive nonenzymatic electrochemical immunoassay. Biosens Bioelectron 47:178–183CrossRef
33.
Zurück zum Zitat Yan ZQ, Ma HM, Fan DW, Hu LH, Pang XH, Gao J, Wei Q, Wang Q (2016) An ultrasensitive sandwich-type electrochemical immunosensor for carcino embryonie antigen based on supermolecular labeling strategy. J Electroanal Chem 781:289–295CrossRef Yan ZQ, Ma HM, Fan DW, Hu LH, Pang XH, Gao J, Wei Q, Wang Q (2016) An ultrasensitive sandwich-type electrochemical immunosensor for carcino embryonie antigen based on supermolecular labeling strategy. J Electroanal Chem 781:289–295CrossRef
34.
Zurück zum Zitat Mazloum-Ardakani M, Hosseinzadeh L, Khoshroo A (2015) Ultrasensitive electrochemical immunosensor for detection of tumor necrosis factor-α based on functionalized MWCNT-gold nanoparticle/Ionic liquid nanocomposite. Electroanalysis 27:2518–2526CrossRef Mazloum-Ardakani M, Hosseinzadeh L, Khoshroo A (2015) Ultrasensitive electrochemical immunosensor for detection of tumor necrosis factor-α based on functionalized MWCNT-gold nanoparticle/Ionic liquid nanocomposite. Electroanalysis 27:2518–2526CrossRef
35.
Zurück zum Zitat Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS, Rusling JF (2009) Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 81:9129–9134CrossRef Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS, Rusling JF (2009) Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 81:9129–9134CrossRef
36.
Zurück zum Zitat Malhotra R, Patel V, Vaqué JP, Gutkind JS, Rusling JF (2010) Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal Chem 82:3118–3123CrossRef Malhotra R, Patel V, Vaqué JP, Gutkind JS, Rusling JF (2010) Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal Chem 82:3118–3123CrossRef
37.
Zurück zum Zitat Wang J, Liu GD, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010–3011CrossRef Wang J, Liu GD, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010–3011CrossRef
38.
Zurück zum Zitat Zhou M, Sun ZF, Shen CC, Li ZY, Zhang Y, Yang MH (2013) Application of hydrogel prepared from ferrocene functionalized amino acid in the design of novel electrochemical immunosensing platform. Biosens Bioelectron 49:243–248CrossRef Zhou M, Sun ZF, Shen CC, Li ZY, Zhang Y, Yang MH (2013) Application of hydrogel prepared from ferrocene functionalized amino acid in the design of novel electrochemical immunosensing platform. Biosens Bioelectron 49:243–248CrossRef
39.
Zurück zum Zitat Lai GS, Wu J, Ju HX, Yan F (2011) Streptavidin-functionalized silver-nanoparticle-enriched carbon nanotube tag for ultrasensitive multiplexed detection of tumor markers. Adv Funct Mater 21:2938–2943CrossRef Lai GS, Wu J, Ju HX, Yan F (2011) Streptavidin-functionalized silver-nanoparticle-enriched carbon nanotube tag for ultrasensitive multiplexed detection of tumor markers. Adv Funct Mater 21:2938–2943CrossRef
40.
Zurück zum Zitat Qin XL, Xu AG, Liu L, Deng WF, Chen C, Tan YM, Fu YC, Xie QJ, Yao SZ (2015) Ultrasensitive electrochemical immunoassay of proteins based on in situ duple amplification of gold nanoparticle biolabel signals. Chem Commun 51:8540–8543CrossRef Qin XL, Xu AG, Liu L, Deng WF, Chen C, Tan YM, Fu YC, Xie QJ, Yao SZ (2015) Ultrasensitive electrochemical immunoassay of proteins based on in situ duple amplification of gold nanoparticle biolabel signals. Chem Commun 51:8540–8543CrossRef
41.
Zurück zum Zitat Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F, Rusling JF (2006) Carbon nanotube amplification strategies for highly sensitive Immunodetection of cancer biomarkers. J Am Chem Soc 128:11199–11205CrossRef Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F, Rusling JF (2006) Carbon nanotube amplification strategies for highly sensitive Immunodetection of cancer biomarkers. J Am Chem Soc 128:11199–11205CrossRef
42.
Zurück zum Zitat Wu D, Wang YG, Zhang Y, Ma HM, Yan T, Du B, Wei Q (2016) Sensitive electrochemical immunosensor for detection of nuclear matrix protein-22 based on NH2-SAPO-34 supported Pd/Co nanoparticles. Sci Rep 6:24551CrossRef Wu D, Wang YG, Zhang Y, Ma HM, Yan T, Du B, Wei Q (2016) Sensitive electrochemical immunosensor for detection of nuclear matrix protein-22 based on NH2-SAPO-34 supported Pd/Co nanoparticles. Sci Rep 6:24551CrossRef
43.
Zurück zum Zitat Zhou SW, Wang YY, Zhu JJ (2016) Simultaneous detection of tumor cell apoptosis regulators Bcl-2 and Bax through a dual-signal-marked electrochemical immunosensor. ACS Appl Mater Interfaces 8:7674–7682CrossRef Zhou SW, Wang YY, Zhu JJ (2016) Simultaneous detection of tumor cell apoptosis regulators Bcl-2 and Bax through a dual-signal-marked electrochemical immunosensor. ACS Appl Mater Interfaces 8:7674–7682CrossRef
44.
Zurück zum Zitat Qin XL, Xu AG, Liu L, Sui YY, Li YL, Tan YM, Chen C, Xie QJ (2017) Selective staining of CdS on ZnO biolabel for ultrasensitive sandwich-type amperometric immunoassay of human heart-type fatty-acid-binding protein and immunoglobulin G. Biosens Bioelectron 91:321–327CrossRef Qin XL, Xu AG, Liu L, Sui YY, Li YL, Tan YM, Chen C, Xie QJ (2017) Selective staining of CdS on ZnO biolabel for ultrasensitive sandwich-type amperometric immunoassay of human heart-type fatty-acid-binding protein and immunoglobulin G. Biosens Bioelectron 91:321–327CrossRef
45.
Zurück zum Zitat Lin DJ, Wu J, Ju HX, Yan F (2014) Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen. Biosens Bioelectron 52:153–158CrossRef Lin DJ, Wu J, Ju HX, Yan F (2014) Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen. Biosens Bioelectron 52:153–158CrossRef
46.
Zurück zum Zitat Wang GN, Li YK, Liu JL, Yuan YJ, Shen ZL, Mei XF (2017) Ultrasensitive multiplexed immunoassay of autophagic biomarkers based on Au/rGO and Au nanocages amplifying electrochemcial signal. Sci Rep 7:2442CrossRef Wang GN, Li YK, Liu JL, Yuan YJ, Shen ZL, Mei XF (2017) Ultrasensitive multiplexed immunoassay of autophagic biomarkers based on Au/rGO and Au nanocages amplifying electrochemcial signal. Sci Rep 7:2442CrossRef
47.
Zurück zum Zitat Huang JL, Tian JN, Zhao YC, Zhao SL (2015) Ag/Au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay. Sens Actuators B-Chem 206:570–576CrossRef Huang JL, Tian JN, Zhao YC, Zhao SL (2015) Ag/Au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay. Sens Actuators B-Chem 206:570–576CrossRef
48.
Zurück zum Zitat Li L, Zhang LN, Yu JH, Ge SG, Song XR (2015) All-graphene composite materials for signal amplification toward ultrasensitive electrochemical immunosensing of tumor marker. Biosens Bioelectron 71:108–114CrossRef Li L, Zhang LN, Yu JH, Ge SG, Song XR (2015) All-graphene composite materials for signal amplification toward ultrasensitive electrochemical immunosensing of tumor marker. Biosens Bioelectron 71:108–114CrossRef
49.
Zurück zum Zitat Wang D, Gan N, Zhang HR, Li TH, Qiao L, Cao YT, Su XR, Jiang S (2015) Simultaneous electrochemical immunoassay using graphene–Au grafted recombinant apoferritin-encoded metallic labels as signal tags and dual-template magnetic molecular imprinted polymer as capture probes. Biosens Bioelectron 65:78–82CrossRef Wang D, Gan N, Zhang HR, Li TH, Qiao L, Cao YT, Su XR, Jiang S (2015) Simultaneous electrochemical immunoassay using graphene–Au grafted recombinant apoferritin-encoded metallic labels as signal tags and dual-template magnetic molecular imprinted polymer as capture probes. Biosens Bioelectron 65:78–82CrossRef
50.
Zurück zum Zitat Wen JL, Zhou SG, Yuan Y (2014) Graphene oxide as nanogold carrier for ultrasensitive electrochemical immunoassay of Shewanella oneidensis with silver enhancement strategy. Biosens Bioelectron 52:44–49CrossRef Wen JL, Zhou SG, Yuan Y (2014) Graphene oxide as nanogold carrier for ultrasensitive electrochemical immunoassay of Shewanella oneidensis with silver enhancement strategy. Biosens Bioelectron 52:44–49CrossRef
51.
Zurück zum Zitat Li MD, Wang P, Li FY, Chu QY, Li YY, Dong YH (2017) An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of mesoporous core-shell Pd@Pt nanoparticles/amino group functionalized graphene nanocomposite. Biosens Bioelectron 87:752–759CrossRef Li MD, Wang P, Li FY, Chu QY, Li YY, Dong YH (2017) An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of mesoporous core-shell Pd@Pt nanoparticles/amino group functionalized graphene nanocomposite. Biosens Bioelectron 87:752–759CrossRef
52.
Zurück zum Zitat Luo Y, Asiri AM, Zhang X, Yang GH, Du D, Lin Y (2014) A magnetic electrochemical immunosensor for the detection of phosphorylated p53 based on enzyme functionalized carbon nanospheres with signal amplification. RSC Adv 4:54066–54071CrossRef Luo Y, Asiri AM, Zhang X, Yang GH, Du D, Lin Y (2014) A magnetic electrochemical immunosensor for the detection of phosphorylated p53 based on enzyme functionalized carbon nanospheres with signal amplification. RSC Adv 4:54066–54071CrossRef
53.
Zurück zum Zitat Čadková M, Metelka R, Holubová L, Horák D, Dvořáková V, Bílková Z, Korecká L (2015) Magnetic beads-based electrochemical immunosensor for monitoring allergenic food proteins. Anal Biochem 484:4–8CrossRef Čadková M, Metelka R, Holubová L, Horák D, Dvořáková V, Bílková Z, Korecká L (2015) Magnetic beads-based electrochemical immunosensor for monitoring allergenic food proteins. Anal Biochem 484:4–8CrossRef
54.
Zurück zum Zitat Zarei H, Ghourchian H, Eskandari K, Zeinali M (2012) Magnetic nanocomposite of anti-human IgG/COOH-multiwalled carbon nanotubes/Fe3O4 as a platform for electrochemical immunoassay. Anal Biochem 421:446–453CrossRef Zarei H, Ghourchian H, Eskandari K, Zeinali M (2012) Magnetic nanocomposite of anti-human IgG/COOH-multiwalled carbon nanotubes/Fe3O4 as a platform for electrochemical immunoassay. Anal Biochem 421:446–453CrossRef
55.
Zurück zum Zitat de Souza Castilho M, Laube T, Yamanaka H, Alegret S, Pividori MI (2011) Magneto immunoassays for plasmodium falciparum Histidine-Rich Protein 2 related to malaria based on magnetic nanoparticles. Anal Chem 83:5570–5577CrossRef de Souza Castilho M, Laube T, Yamanaka H, Alegret S, Pividori MI (2011) Magneto immunoassays for plasmodium falciparum Histidine-Rich Protein 2 related to malaria based on magnetic nanoparticles. Anal Chem 83:5570–5577CrossRef
56.
Zurück zum Zitat Yang ZH, Zhuo Y, Yuan R, Chai YQ (2016) Highly effective protein converting strategy for ultrasensitive electrochemical assay of Cystatin C. Anal Chem 88:5189–5196CrossRef Yang ZH, Zhuo Y, Yuan R, Chai YQ (2016) Highly effective protein converting strategy for ultrasensitive electrochemical assay of Cystatin C. Anal Chem 88:5189–5196CrossRef
57.
Zurück zum Zitat Zhang HF, Ma LN, Li PL, Zheng JB (2016) A novel electrochemical immunosensor based on nonenzymatic Ag@Au-Fe3O4 nanoelectrocatalyst for protein biomarker detection. Biosens Bioelectron 85:343–350CrossRef Zhang HF, Ma LN, Li PL, Zheng JB (2016) A novel electrochemical immunosensor based on nonenzymatic Ag@Au-Fe3O4 nanoelectrocatalyst for protein biomarker detection. Biosens Bioelectron 85:343–350CrossRef
58.
Zurück zum Zitat Ho D, Sun XL, Sun SH (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44:875–882CrossRef Ho D, Sun XL, Sun SH (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44:875–882CrossRef
59.
Zurück zum Zitat Ruiz-Valdepeñas Montiel V, Campuzano S, Conzuelo F, Torrente-Rodríguez RM, Gamella M, Reviejo AJ, Pingarrón JM (2015) Electrochemical magnetoimmunosensing platform for determination of the milk allergen β-lactoglobulin. Talanta 131:156–162CrossRef Ruiz-Valdepeñas Montiel V, Campuzano S, Conzuelo F, Torrente-Rodríguez RM, Gamella M, Reviejo AJ, Pingarrón JM (2015) Electrochemical magnetoimmunosensing platform for determination of the milk allergen β-lactoglobulin. Talanta 131:156–162CrossRef
60.
Zurück zum Zitat Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Campuzano S, Pedrero M, Farchado M, Vargas E, Manuel de Villena FJ, Garranzo-Asensio M, Barderas R, Pingarrón JM (2017) Electrochemical sensor for rapid determination of fibroblast growth factor receptor 4 in raw cancer cell lysates. PLoS ONE 12:e0175056CrossRef Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Campuzano S, Pedrero M, Farchado M, Vargas E, Manuel de Villena FJ, Garranzo-Asensio M, Barderas R, Pingarrón JM (2017) Electrochemical sensor for rapid determination of fibroblast growth factor receptor 4 in raw cancer cell lysates. PLoS ONE 12:e0175056CrossRef
61.
Zurück zum Zitat Pedrero M, Manuel de Villena FJ, Muñoz-San Martín C, Campuzano S, Garranzo-Asensio M, Barderas R, Pingarrón JM (2016) Disposable amperometric immunosensor for the determination of human P53 Protein in cell lysates using magnetic micro-carriers. Biosensors 6:56CrossRef Pedrero M, Manuel de Villena FJ, Muñoz-San Martín C, Campuzano S, Garranzo-Asensio M, Barderas R, Pingarrón JM (2016) Disposable amperometric immunosensor for the determination of human P53 Protein in cell lysates using magnetic micro-carriers. Biosensors 6:56CrossRef
62.
Zurück zum Zitat Lai GS, Zheng M, Hu WJ, Yu AM (2017) One-pot loading high-content thionine on polydopamine-functionalized mesoporous silica nanosphere for ultrasensitive electrochemical immunoassay. Biosens Bioelectron 95:15–20CrossRef Lai GS, Zheng M, Hu WJ, Yu AM (2017) One-pot loading high-content thionine on polydopamine-functionalized mesoporous silica nanosphere for ultrasensitive electrochemical immunoassay. Biosens Bioelectron 95:15–20CrossRef
63.
Zurück zum Zitat Ge XX, Zhang AD, Lin YH, Du D (2016) Simultaneous immunoassay of phosphorylated proteins based on apoferritin templated metallic phosphates as voltammetrically distinguishable signal reporters. Biosens Bioelectron 80:201–207CrossRef Ge XX, Zhang AD, Lin YH, Du D (2016) Simultaneous immunoassay of phosphorylated proteins based on apoferritin templated metallic phosphates as voltammetrically distinguishable signal reporters. Biosens Bioelectron 80:201–207CrossRef
64.
Zurück zum Zitat Urbanova V, Magro M, Gedanken A, Baratella D, Vianello F, Zboril R (2014) Nanocrystalline iron oxides, composites, and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chem Mater 26:6653–6673CrossRef Urbanova V, Magro M, Gedanken A, Baratella D, Vianello F, Zboril R (2014) Nanocrystalline iron oxides, composites, and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chem Mater 26:6653–6673CrossRef
65.
Zurück zum Zitat Tang J, Tang DP, Niessner R, Chen GN, Knopp D (2011) Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags. Anal Chem 83:5407–5414CrossRef Tang J, Tang DP, Niessner R, Chen GN, Knopp D (2011) Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags. Anal Chem 83:5407–5414CrossRef
66.
Zurück zum Zitat Wang Q, Gan XX, Zang RH, Chai YQ, Yuan YL, Yuan R (2016) An amplified electrochemical proximity immunoassay for the total protein of Nosema bombycis based on the catalytic activity of Fe3O4NPs towards methylene blue. Biosens Bioelectron 81:382–387CrossRef Wang Q, Gan XX, Zang RH, Chai YQ, Yuan YL, Yuan R (2016) An amplified electrochemical proximity immunoassay for the total protein of Nosema bombycis based on the catalytic activity of Fe3O4NPs towards methylene blue. Biosens Bioelectron 81:382–387CrossRef
67.
Zurück zum Zitat Guo JJ, Wang JC, Zhao JQ, Guo ZL, Zhang YZ (2016) Ultrasensitive multiplexed immunoassay for tumor biomarkers based on DNA hybridization chain reaction amplifying signal. ACS Appl Mater Interfaces 8:6898–6904CrossRef Guo JJ, Wang JC, Zhao JQ, Guo ZL, Zhang YZ (2016) Ultrasensitive multiplexed immunoassay for tumor biomarkers based on DNA hybridization chain reaction amplifying signal. ACS Appl Mater Interfaces 8:6898–6904CrossRef
68.
Zurück zum Zitat Zhuo Y, Han J, Yu YQ, Chai YQ, Yuan R (2014) Signal amplification strategy with synergistic catalysis of hollow Pt nanochains and hemoglobin for electrochemical immunosensor. J Electrochem Soc 161:B26–B30CrossRef Zhuo Y, Han J, Yu YQ, Chai YQ, Yuan R (2014) Signal amplification strategy with synergistic catalysis of hollow Pt nanochains and hemoglobin for electrochemical immunosensor. J Electrochem Soc 161:B26–B30CrossRef
69.
Zurück zum Zitat Ge YQ, Wu J, Ju HX, Wu S (2014) Ultrasensitive enzyme-free electrochemical immunosensor based on hybridization chain reaction triggered double strand DNA@Au nanoparticle tag. Talanta 120:218–223CrossRef Ge YQ, Wu J, Ju HX, Wu S (2014) Ultrasensitive enzyme-free electrochemical immunosensor based on hybridization chain reaction triggered double strand DNA@Au nanoparticle tag. Talanta 120:218–223CrossRef
70.
Zurück zum Zitat Zhou J, Lai WQ, Zhuang JY, Tang J, Tang DP (2013) Nanogold-functionalized DNAzyme concatamers with redox-active intercalators for quadruple signal amplification of electrochemical immunoassay. ACS Appl Mater Interfaces 5:2773–2781CrossRef Zhou J, Lai WQ, Zhuang JY, Tang J, Tang DP (2013) Nanogold-functionalized DNAzyme concatamers with redox-active intercalators for quadruple signal amplification of electrochemical immunoassay. ACS Appl Mater Interfaces 5:2773–2781CrossRef
71.
Zurück zum Zitat Zhang B, Liu BQ, Tang DP, Niessner R, Chen GN, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem 84:5392–5399CrossRef Zhang B, Liu BQ, Tang DP, Niessner R, Chen GN, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem 84:5392–5399CrossRef
72.
Zurück zum Zitat Song C, Xie GM, Wang L, Liu LZ, Tian G, Xiang H (2014) DNA-based hybridization chain reaction for an ultrasensitive cancer marker EBNA-1 electrochemical immunosensor. Biosens Bioelectron 58:68–74CrossRef Song C, Xie GM, Wang L, Liu LZ, Tian G, Xiang H (2014) DNA-based hybridization chain reaction for an ultrasensitive cancer marker EBNA-1 electrochemical immunosensor. Biosens Bioelectron 58:68–74CrossRef
73.
Zurück zum Zitat Pei XM, Xu ZH, Zhang JY, Liu Z, Tian JN (2013) Sensitive electrochemical immunoassay of IgG1 based on poly(amido amine) dendrimer-encapsulated CdS quantum dots. RSC Adv 3:16410–16415CrossRef Pei XM, Xu ZH, Zhang JY, Liu Z, Tian JN (2013) Sensitive electrochemical immunoassay of IgG1 based on poly(amido amine) dendrimer-encapsulated CdS quantum dots. RSC Adv 3:16410–16415CrossRef
74.
Zurück zum Zitat Sun AL (2015) Sensitive electrochemical immunoassay with signal enhancement based on nanogold-encapsulated poly(amidoamine) dendrimer-stimulated hydrogen evolution reaction. Analyst 140:7948–7954CrossRef Sun AL (2015) Sensitive electrochemical immunoassay with signal enhancement based on nanogold-encapsulated poly(amidoamine) dendrimer-stimulated hydrogen evolution reaction. Analyst 140:7948–7954CrossRef
75.
Zurück zum Zitat Jing P, Yi HY, Xue SY, Chai YQ, Yuan R, Xu WJ (2015) A sensitive electrochemical aptasensor based on palladium nanoparticles decorated graphene–molybdenum disulfide flower-like nanocomposites and enzymatic signal amplification. Anal Chim Acta 853:234–241CrossRef Jing P, Yi HY, Xue SY, Chai YQ, Yuan R, Xu WJ (2015) A sensitive electrochemical aptasensor based on palladium nanoparticles decorated graphene–molybdenum disulfide flower-like nanocomposites and enzymatic signal amplification. Anal Chim Acta 853:234–241CrossRef
76.
Zurück zum Zitat Salimi A, Khezrian S, Hallaj R, Vaziry A (2014) Highly sensitive electrochemical aptasensor for immunoglobulin E detection based on sandwich assay using enzyme-linked aptamer. Anal Biochem 466:89–97CrossRef Salimi A, Khezrian S, Hallaj R, Vaziry A (2014) Highly sensitive electrochemical aptasensor for immunoglobulin E detection based on sandwich assay using enzyme-linked aptamer. Anal Biochem 466:89–97CrossRef
77.
Zurück zum Zitat Zhao JM, Zheng T, Gao JX, Guo SJ, Zhou XX, Xu WJ (2017) A sub-picomolar assay for protein by using cubic Cu2O nanocages loaded with Au nanoparticles as robust redox probes and efficient non-enzymatic electrocatalysts. Analyst 142:794–799CrossRef Zhao JM, Zheng T, Gao JX, Guo SJ, Zhou XX, Xu WJ (2017) A sub-picomolar assay for protein by using cubic Cu2O nanocages loaded with Au nanoparticles as robust redox probes and efficient non-enzymatic electrocatalysts. Analyst 142:794–799CrossRef
78.
Zurück zum Zitat Song W, Li H, Liang H, Qiang WB, Xu DK (2014) Disposable electrochemical aptasensor array by using in situ DNA hybridization inducing silver nanoparticles aggregate for signal amplification. Anal Chem 86:2775–2783CrossRef Song W, Li H, Liang H, Qiang WB, Xu DK (2014) Disposable electrochemical aptasensor array by using in situ DNA hybridization inducing silver nanoparticles aggregate for signal amplification. Anal Chem 86:2775–2783CrossRef
79.
Zurück zum Zitat Ocaña C, del Valle M (2014) Signal amplification for thrombin impedimetric aptasensor: Sandwich protocol and use of gold-streptavidin nanoparticles. Biosens Bioelectron 54:408–414CrossRef Ocaña C, del Valle M (2014) Signal amplification for thrombin impedimetric aptasensor: Sandwich protocol and use of gold-streptavidin nanoparticles. Biosens Bioelectron 54:408–414CrossRef
80.
Zurück zum Zitat Song W, Niu QQ, Qiang WB, Li H, Xu DK (2016) Enzyme-free electrochemical aptasensor by using silver nanoparticles aggregates coupling with carbon nanotube inducing signal amplification through electrodeposition. J Electroanal Chem 781:62–69CrossRef Song W, Niu QQ, Qiang WB, Li H, Xu DK (2016) Enzyme-free electrochemical aptasensor by using silver nanoparticles aggregates coupling with carbon nanotube inducing signal amplification through electrodeposition. J Electroanal Chem 781:62–69CrossRef
81.
Zurück zum Zitat Wang Y, He X, Wang K, Ni X, Su J, Chen Z (2011) Electrochemical detection of thrombin based on aptamer and ferrocenylhexanethiol loaded silica nanocapsules. Biosens Bioelectron 26:3536–3541CrossRef Wang Y, He X, Wang K, Ni X, Su J, Chen Z (2011) Electrochemical detection of thrombin based on aptamer and ferrocenylhexanethiol loaded silica nanocapsules. Biosens Bioelectron 26:3536–3541CrossRef
82.
Zurück zum Zitat Bai LJ, Chen YH, Bai Y, Chen YJ, Zhou J, Huang AL (2017) Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials 133:11–19CrossRef Bai LJ, Chen YH, Bai Y, Chen YJ, Zhou J, Huang AL (2017) Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials 133:11–19CrossRef
83.
Zurück zum Zitat Wang QQ, Zhou ZX, Zhai YL, Zhang LL, Hong W, Zhang ZQ, Dong SJ (2015) Label-free aptamer biosensor for thrombin detection based on functionalized graphene nanocomposites. Talanta 141:247–252CrossRef Wang QQ, Zhou ZX, Zhai YL, Zhang LL, Hong W, Zhang ZQ, Dong SJ (2015) Label-free aptamer biosensor for thrombin detection based on functionalized graphene nanocomposites. Talanta 141:247–252CrossRef
84.
Zurück zum Zitat Taleat Z, Cristea C, Marrazza G, Mazloum-Ardakani M, Săndulescu R (2014) Electrochemical immunoassay based on aptamer–protein interaction and functionalized polymer for cancer biomarker detection. J Electroanal Chem 717:119–124CrossRef Taleat Z, Cristea C, Marrazza G, Mazloum-Ardakani M, Săndulescu R (2014) Electrochemical immunoassay based on aptamer–protein interaction and functionalized polymer for cancer biomarker detection. J Electroanal Chem 717:119–124CrossRef
85.
Zurück zum Zitat Zamay GS, Zamay TN, Kolovskii VA, Shabanov AV, Glazyrin YE, Veprintsev DV, Krat AV, Zamay SS, Kolovskaya OS, Gargaun A, Sokolov AE, Modestov AA, Artyukhov IP, Chesnokov NV, Petrova MM, Berezovski MV, Zamay AS (2016) Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples. Sci Rep 6:34350CrossRef Zamay GS, Zamay TN, Kolovskii VA, Shabanov AV, Glazyrin YE, Veprintsev DV, Krat AV, Zamay SS, Kolovskaya OS, Gargaun A, Sokolov AE, Modestov AA, Artyukhov IP, Chesnokov NV, Petrova MM, Berezovski MV, Zamay AS (2016) Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples. Sci Rep 6:34350CrossRef
86.
Zurück zum Zitat Qureshi A, Gurbuz Y, Niazi JH (2015) Capacitive aptamer–antibody based sandwich assay for the detection of VEGF cancer biomarker in serum. Sens Actuators B-Chem 209:645–651CrossRef Qureshi A, Gurbuz Y, Niazi JH (2015) Capacitive aptamer–antibody based sandwich assay for the detection of VEGF cancer biomarker in serum. Sens Actuators B-Chem 209:645–651CrossRef
87.
Zurück zum Zitat Ocaña C, Lukic S, del Valle M (2015) Aptamer-antibody sandwich assay for cytochrome c employing an MWCNT platform and electrochemical impedance. Microchim Acta 182:2045–2053CrossRef Ocaña C, Lukic S, del Valle M (2015) Aptamer-antibody sandwich assay for cytochrome c employing an MWCNT platform and electrochemical impedance. Microchim Acta 182:2045–2053CrossRef
88.
Zurück zum Zitat Ocana C, Hayat A, Mishra R, Vasilescu A, del Valle M, Marty J-L (2015) A novel electrochemical aptamer-antibody sandwich assay for lysozyme detection. Analyst 140:4148–4153CrossRef Ocana C, Hayat A, Mishra R, Vasilescu A, del Valle M, Marty J-L (2015) A novel electrochemical aptamer-antibody sandwich assay for lysozyme detection. Analyst 140:4148–4153CrossRef
89.
Zurück zum Zitat Zhang J, Yuan YL, BiXie S, Chai YQ, Yuan R (2014) Amplified amperometric aptasensor for selective detection of protein using catalase-functional DNA–PtNPs dendrimer as a synergetic signal amplification label. Biosens Bioelectron 60:224–230CrossRef Zhang J, Yuan YL, BiXie S, Chai YQ, Yuan R (2014) Amplified amperometric aptasensor for selective detection of protein using catalase-functional DNA–PtNPs dendrimer as a synergetic signal amplification label. Biosens Bioelectron 60:224–230CrossRef
Metadaten
Titel
Electrochemical Sandwich Assays for Protein Detection
verfasst von
Hui Li
Shaoguang Li
Fan Xia
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7835-4_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.