Skip to main content
Erschienen in: Rare Metals 2/2023

22.12.2016

Electrode connection optimization for both temperature difference and purification of lanthanum rod during solid-state electrotransport

verfasst von: Jia-Min Zhong, Zong-An Li, Xiao-Wei Zhang, Lin Zhou, Zhi-Qiang Wang, De-Hong Chen

Erschienen in: Rare Metals | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to solve the problem of large temperature difference between the center and ends of the metallic rod in the purification process of solid-state electrotransport (SSE), three types of electrode connections of tantalum and the corresponding rods of metallic lanthanum were designed, the temperature distributions of three kinds of rod were measured, and the influence of temperature difference on the purification effect of solid-state electrotransport was investigated. The results indicate that the maximum temperature difference of the rod will be significantly reduced through decreasing the cross section of electrode connection to make its unit length resistance close to that of rod, or increasing the unit length resistance of the section at both ends of the rod. When these two measures are adopted at the same time, the effect of decreasing rod temperature difference is the best in the present study, and the maximum temperature difference of the rod can be reduced to 29 °C when the maximum temperature of the rod is 820 °C. The migration velocity of the impurities at rod ends can be obviously improved after the rod temperature difference is reduced, which enables the purification effect and efficiency of solid-state electrotransport to be greatly raised; it is also found that the major impurities iron in metallic lanthanum migrates more easily than oxygen and carbon during the purification of metal lanthanum with solid-state electrotransport.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Carlson ON, Schmidt FA, Peterson DT. Electrotransport of interstitial atoms in yttrium. J Less Common Met. 1966;10(1):1.CrossRef Carlson ON, Schmidt FA, Peterson DT. Electrotransport of interstitial atoms in yttrium. J Less Common Met. 1966;10(1):1.CrossRef
[2]
Zurück zum Zitat Marchant JD, Shedd ES, Henrie TA. Solid-State Electromigration of Impurities in Cerium Metal. Reno: Bureau of Mines, Nev Reno Metallurgy Research Center; 1966. 1. Marchant JD, Shedd ES, Henrie TA. Solid-State Electromigration of Impurities in Cerium Metal. Reno: Bureau of Mines, Nev Reno Metallurgy Research Center; 1966. 1.
[3]
Zurück zum Zitat Peterson DT, Schmidt FA. Electrotransport of carbon, nitrogen and oxygen in gadolinium. J Less Common Met. 1972;29(3):321.CrossRef Peterson DT, Schmidt FA. Electrotransport of carbon, nitrogen and oxygen in gadolinium. J Less Common Met. 1972;29(3):321.CrossRef
[4]
Zurück zum Zitat Jordan RG, Jones DW. The purification of the rare-earth metals I. Solid state electrolysis of gadolinium. J Less Common Met. 1973;31(1):125.CrossRef Jordan RG, Jones DW. The purification of the rare-earth metals I. Solid state electrolysis of gadolinium. J Less Common Met. 1973;31(1):125.CrossRef
[5]
Zurück zum Zitat Fort D. The purification and crystal growth of rare earth metals using solid state electrotransport. J Less Common Met. 1987;134(1):45.CrossRef Fort D. The purification and crystal growth of rare earth metals using solid state electrotransport. J Less Common Met. 1987;134(1):45.CrossRef
[6]
Zurück zum Zitat Ionov AM, Volkov VT, Nikiforova TV. Behaviour of interstitial impurities on the surface of yttrium during solid state electrotransport-Auger studies. J Alloys Compd. 1995;223(1):91.CrossRef Ionov AM, Volkov VT, Nikiforova TV. Behaviour of interstitial impurities on the surface of yttrium during solid state electrotransport-Auger studies. J Alloys Compd. 1995;223(1):91.CrossRef
[7]
Zurück zum Zitat Lee CK, Park JS, Yeon SH, Rhee KI. Modeling of solid-state electrotransport for purification of gadolinium. Met Mater Int. 2001;7(4):343.CrossRef Lee CK, Park JS, Yeon SH, Rhee KI. Modeling of solid-state electrotransport for purification of gadolinium. Met Mater Int. 2001;7(4):343.CrossRef
[8]
Zurück zum Zitat Wu R. Study on preparation technique of high purity gadolinium. Beijing: General Research Institute for Nonferrous Metals; 2012. 35. Wu R. Study on preparation technique of high purity gadolinium. Beijing: General Research Institute for Nonferrous Metals; 2012. 35.
[9]
Zurück zum Zitat Fu S. Study on technology of purification of praseodymium by solid state electrotransport. Beijing: General Research Institute for Nonferrous Metals; 2014. 34. Fu S. Study on technology of purification of praseodymium by solid state electrotransport. Beijing: General Research Institute for Nonferrous Metals; 2014. 34.
[10]
Zurück zum Zitat Jordan RG, Jones DW, Hems VJ. The purification of the rare earth metals II. Solid state electrotransport processing of terbium. J Less Common Met. 1975;42(1):101.CrossRef Jordan RG, Jones DW, Hems VJ. The purification of the rare earth metals II. Solid state electrotransport processing of terbium. J Less Common Met. 1975;42(1):101.CrossRef
[11]
Zurück zum Zitat Li ZA, Yan SY, Wang ZQ, Chen DH, Wu DG, Zhang XW, Miao RY. Research progress in rare earth metal high purification of China. In: Proceedings of the National Symposium on Rare Earth Chemistry and metallurgy in China. Ganzhou; 2014. 4. Li ZA, Yan SY, Wang ZQ, Chen DH, Wu DG, Zhang XW, Miao RY. Research progress in rare earth metal high purification of China. In: Proceedings of the National Symposium on Rare Earth Chemistry and metallurgy in China. Ganzhou; 2014. 4.
[12]
Zurück zum Zitat Carlson ON, Schmidt FA, Peterson DT. Purification of rare-earth metals by electrotransport. J Less Common Met. 1975;39(2):277.CrossRef Carlson ON, Schmidt FA, Peterson DT. Purification of rare-earth metals by electrotransport. J Less Common Met. 1975;39(2):277.CrossRef
[13]
Zurück zum Zitat Carlson ON, Schmidt FA. Electrotransport of solutes in rare earth metals. J Less Common Met. 1977;53(1):73.CrossRef Carlson ON, Schmidt FA. Electrotransport of solutes in rare earth metals. J Less Common Met. 1977;53(1):73.CrossRef
[14]
Zurück zum Zitat Schmidt FA, Martsching GA, Carlson ON. Electrotransport of carbon, nitrogen and oxygen in lanthanum. J Less Common Met. 1979;68(1):75.CrossRef Schmidt FA, Martsching GA, Carlson ON. Electrotransport of carbon, nitrogen and oxygen in lanthanum. J Less Common Met. 1979;68(1):75.CrossRef
[15]
Zurück zum Zitat Wu R, Li ZA, Chen DH, Wang ZQ, Pang SM, Zhang XW. Purification of gadolinium by solid state electrotransport processing. J Chin Soc Rare Earths. 2012;30(6):693. Wu R, Li ZA, Chen DH, Wang ZQ, Pang SM, Zhang XW. Purification of gadolinium by solid state electrotransport processing. J Chin Soc Rare Earths. 2012;30(6):693.
[16]
Zurück zum Zitat Fu S, Li ZA, Zhang ZQ, Chen DH, Miao RY, Wang ZQ. Purification of praseodymium by solid state electrotransport. Chin J Rare Met. 2015;39(11):1018. Fu S, Li ZA, Zhang ZQ, Chen DH, Miao RY, Wang ZQ. Purification of praseodymium by solid state electrotransport. Chin J Rare Met. 2015;39(11):1018.
[17]
Zurück zum Zitat Kirchheim R, Fromm E. Electrotransport of oxygen and nitrogen in niobium and tantalum. Acta Metall. 1974;22(11):1397.CrossRef Kirchheim R, Fromm E. Electrotransport of oxygen and nitrogen in niobium and tantalum. Acta Metall. 1974;22(11):1397.CrossRef
[18]
Zurück zum Zitat Schmidt FA, Warner JC. Electrotransport of carbon, nitrogen and oxygen in vanadium. J Less Common Met. 1967;13(5):493.CrossRef Schmidt FA, Warner JC. Electrotransport of carbon, nitrogen and oxygen in vanadium. J Less Common Met. 1967;13(5):493.CrossRef
[19]
Zurück zum Zitat Marchant JD, Shedd ES, Henrie TA, Wong MM. Electrotransport of Impurities in Rare-Earth Metals, Using a Pulsed Current. Reno: Bureau of Mines, Nev Reno Metallurgy Research Center; 1971. 1. Marchant JD, Shedd ES, Henrie TA, Wong MM. Electrotransport of Impurities in Rare-Earth Metals, Using a Pulsed Current. Reno: Bureau of Mines, Nev Reno Metallurgy Research Center; 1971. 1.
[20]
Zurück zum Zitat Schmidt FA, Carlson ON. Electrotransport of carbon in niobium and tantalum. J Less Common Met. 1972;26(2):247.CrossRef Schmidt FA, Carlson ON. Electrotransport of carbon in niobium and tantalum. J Less Common Met. 1972;26(2):247.CrossRef
[21]
Zurück zum Zitat Wei JH. Metallurgical Engineering Mathematics. Beijing: Metallurgical Industry Press; 1988. 78. Wei JH. Metallurgical Engineering Mathematics. Beijing: Metallurgical Industry Press; 1988. 78.
[22]
Zurück zum Zitat Zhang XZ. Metallurgical Transmission Principle. Edited by Zhang XZ. Beijing: Metallurgical Industry Press; 1991. 306. Zhang XZ. Metallurgical Transmission Principle. Edited by Zhang XZ. Beijing: Metallurgical Industry Press; 1991. 306.
[23]
Zurück zum Zitat Yang SM, Tao WQ. Heat Transfer Theory. 4th ed. Beijing: Higher Education Press; 2006. 25. Yang SM, Tao WQ. Heat Transfer Theory. 4th ed. Beijing: Higher Education Press; 2006. 25.
[24]
Zurück zum Zitat Halas S, Durakiewicz T. Temperature distribution along a metal filament heated in vacuum by DC current. Vacuum. 1998;49(4):331.CrossRef Halas S, Durakiewicz T. Temperature distribution along a metal filament heated in vacuum by DC current. Vacuum. 1998;49(4):331.CrossRef
[25]
Zurück zum Zitat Cathey WN, Murphy JE, Woodyard JR. Electrotransport and diffusion of Co, Fe, and Ag in γ-cerium. Metall Trans. 1973;4(6):1463.CrossRef Cathey WN, Murphy JE, Woodyard JR. Electrotransport and diffusion of Co, Fe, and Ag in γ-cerium. Metall Trans. 1973;4(6):1463.CrossRef
[26]
Zurück zum Zitat Okafor ICI, Carlson ON. Fast diffusion and electrotransport of cobalt, iron and nickel in α-Y. J Less Common Met. 1982;84(1):65.CrossRef Okafor ICI, Carlson ON. Fast diffusion and electrotransport of cobalt, iron and nickel in α-Y. J Less Common Met. 1982;84(1):65.CrossRef
[27]
Zurück zum Zitat Axtell SC, Okafor ICI, Conzemius RJ, Carlson ON. Fast diffusion and electrotransport of iron in scandium. J Less Common Met. 1986;115(2):269.CrossRef Axtell SC, Okafor ICI, Conzemius RJ, Carlson ON. Fast diffusion and electrotransport of iron in scandium. J Less Common Met. 1986;115(2):269.CrossRef
Metadaten
Titel
Electrode connection optimization for both temperature difference and purification of lanthanum rod during solid-state electrotransport
verfasst von
Jia-Min Zhong
Zong-An Li
Xiao-Wei Zhang
Lin Zhou
Zhi-Qiang Wang
De-Hong Chen
Publikationsdatum
22.12.2016
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2023
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-016-0810-8

Weitere Artikel der Ausgabe 2/2023

Rare Metals 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.