Skip to main content
Erschienen in: Journal of Electronic Materials 8/2021

07.06.2021 | Original Research Article

Electrodeposition of ZnO Nanorods with Synergistic Photocatalytic and Self-Cleaning Effects

verfasst von: Xinmeng Wang, Xueqin Li, Qi Zhang, Zicheng Lu, Haiping Song, Yongqian Wang

Erschienen in: Journal of Electronic Materials | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The problem of water pollution has become an urgent global issue. As one approach for addressing this problem, in this work, rod-like ZnO nanostructures were synthesized by a simple electrodeposition method, which can purify wastewater by photocatalytic reaction. ZnO was deposited on indium tin oxide (ITO) conductive glass by electrodeposition, and then the surface of the sample was modified by 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane to make the surface super-hydrophobic. ZnO nanorods with a “photocatalytic and self-cleaning” synergistic effect were obtained. The morphology and structure of the samples were analyzed by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). FESEM images show that different deposition times, water bath temperatures, electrolysis times, and electrodeposition voltages have different effects on the surface morphology of the materials. XRD patterns show that the crystal structure of nano-ZnO is a hexagonal wurtzite crystalline structure. The optical properties of the samples were characterized by UV–Vis spectrophotometry. The hydrophobicity of the materials was characterized using a droplet shape analyzer. Photocatalysis results show that the modification can improve the photocatalytic efficiency of the materials. The results show that the material has excellent optical properties, and because of its super-hydrophobicity, there are no residual small particles on the surface after the photocatalytic reaction. Therefore, this material not only has high photocatalytic performance, but can also be recycled for treatment of water pollution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. Feng, J. Chen, L.Y. Guo, S.Y. Lei, and Y.R. Ni, Appl. Surf. Sci. 258, 8160 (2012).CrossRef X. Feng, J. Chen, L.Y. Guo, S.Y. Lei, and Y.R. Ni, Appl. Surf. Sci. 258, 8160 (2012).CrossRef
2.
Zurück zum Zitat A.A. Firooz, R.A. Mirzaie, and F. Kamrani, J. Struct. Chem. 59, 739 (2018).CrossRef A.A. Firooz, R.A. Mirzaie, and F. Kamrani, J. Struct. Chem. 59, 739 (2018).CrossRef
3.
Zurück zum Zitat Y.L. Chen, L.C. Kuo, M.L. Tseng, H.M. Chen, C.K. Chen, H.J. Huang, R.S. Liu, and D.P. Tsai, Opt. Express 21, 7240 (2013).CrossRef Y.L. Chen, L.C. Kuo, M.L. Tseng, H.M. Chen, C.K. Chen, H.J. Huang, R.S. Liu, and D.P. Tsai, Opt. Express 21, 7240 (2013).CrossRef
4.
Zurück zum Zitat A.P. Bhirud, S.D. Sathaye, R.P. Waichal, L.K. Nikam, and B.B. Kale, Green Chem. 14, 2790 (2012).CrossRef A.P. Bhirud, S.D. Sathaye, R.P. Waichal, L.K. Nikam, and B.B. Kale, Green Chem. 14, 2790 (2012).CrossRef
5.
Zurück zum Zitat F. Yan, S.W. Zhang, Y. Liu, H.F. Liu, F.Y. Qu, X. Cai, and X. Wu, Mater. Res. Bull. 59, 98 (2014).CrossRef F. Yan, S.W. Zhang, Y. Liu, H.F. Liu, F.Y. Qu, X. Cai, and X. Wu, Mater. Res. Bull. 59, 98 (2014).CrossRef
6.
Zurück zum Zitat C.Q. Zhu, B.A. Lu, Q. Su, E.Q. Xie, and W. Lan, Nanoscale 4, 3060 (2012).CrossRef C.Q. Zhu, B.A. Lu, Q. Su, E.Q. Xie, and W. Lan, Nanoscale 4, 3060 (2012).CrossRef
7.
Zurück zum Zitat M.B. Nayan, K. Namratha, and A.K. Byrappa, Physiol. Plant. 54, 451 (2006). M.B. Nayan, K. Namratha, and A.K. Byrappa, Physiol. Plant. 54, 451 (2006).
8.
Zurück zum Zitat S.C. Shen, W.K. Ng, Z.Y. Zhong, Y.C. Dong, L.S.O. Chia, and R.B.H. Tan, J. Am. Ceram. Soc. 92, 1311 (2010).CrossRef S.C. Shen, W.K. Ng, Z.Y. Zhong, Y.C. Dong, L.S.O. Chia, and R.B.H. Tan, J. Am. Ceram. Soc. 92, 1311 (2010).CrossRef
9.
Zurück zum Zitat J.S. Huang, and C.F. Lin, J. Appl. Phys. 103, 1897 (2008). J.S. Huang, and C.F. Lin, J. Appl. Phys. 103, 1897 (2008).
10.
Zurück zum Zitat S.E. Ahn, J.S. Lee, H. Kim, S. Kim, B.H. Kang, H.K. Kang, and G.T. Kim, Appl. Phys. Lett. 84, 5022 (2004).CrossRef S.E. Ahn, J.S. Lee, H. Kim, S. Kim, B.H. Kang, H.K. Kang, and G.T. Kim, Appl. Phys. Lett. 84, 5022 (2004).CrossRef
11.
Zurück zum Zitat E. Danielson, V. Dhamodharan, A. Porkovich, P. Kumar, and M. Sowwan, Sci. Rep. 9, 17370 (2019).CrossRef E. Danielson, V. Dhamodharan, A. Porkovich, P. Kumar, and M. Sowwan, Sci. Rep. 9, 17370 (2019).CrossRef
12.
13.
Zurück zum Zitat C.L. Hong, E. Park, I. Shin, and J. Hong, Bull. Korean Chem. Soc. 41, 358 (2020).CrossRef C.L. Hong, E. Park, I. Shin, and J. Hong, Bull. Korean Chem. Soc. 41, 358 (2020).CrossRef
14.
Zurück zum Zitat D.L. Ramirez, K.N. Alvarez, G. Riveros, M. Ejos, and M.G. Lobos, Ecs Trans. 58, 117 (2013).CrossRef D.L. Ramirez, K.N. Alvarez, G. Riveros, M. Ejos, and M.G. Lobos, Ecs Trans. 58, 117 (2013).CrossRef
15.
Zurück zum Zitat L. Shi, L. Liang, J. Ma, S.F. Zhong, F.X. Wang, and J.M. Sun, Ceram. Int. 40, 3495 (2014).CrossRef L. Shi, L. Liang, J. Ma, S.F. Zhong, F.X. Wang, and J.M. Sun, Ceram. Int. 40, 3495 (2014).CrossRef
16.
Zurück zum Zitat M. Ahmad, E. Ahmed, Y.W. Zhang, N.R. Khalid, J.F. Xu, M. Ullah, and Z.L. Hong, Curr. Appl. Phys. 13, 697 (2013).CrossRef M. Ahmad, E. Ahmed, Y.W. Zhang, N.R. Khalid, J.F. Xu, M. Ullah, and Z.L. Hong, Curr. Appl. Phys. 13, 697 (2013).CrossRef
17.
Zurück zum Zitat H. Agil, and N. Akduran, Adv. J. Sci. Eng. 1, 122 (2020). H. Agil, and N. Akduran, Adv. J. Sci. Eng. 1, 122 (2020).
18.
Zurück zum Zitat O.M. Ozkendir, Adv. J. Sci. Eng. 1, 7 (2020). O.M. Ozkendir, Adv. J. Sci. Eng. 1, 7 (2020).
20.
Zurück zum Zitat A.S. Rad, A. Mirabi, M. Peyravi, and M. Mirzaei, Can. J. Phys. 95, 958 (2017).CrossRef A.S. Rad, A. Mirabi, M. Peyravi, and M. Mirzaei, Can. J. Phys. 95, 958 (2017).CrossRef
21.
Zurück zum Zitat M. Motahharinia, H.A. Zamani, and H.K. Maleh, Eur. Chem. Commun. 2, 760 (2020). M. Motahharinia, H.A. Zamani, and H.K. Maleh, Eur. Chem. Commun. 2, 760 (2020).
22.
Zurück zum Zitat V.R. Shinde, C.D. Lokhande, R.S. Mane, and S.H. Han, Appl. Surf. Sci. 245, 407 (2005).CrossRef V.R. Shinde, C.D. Lokhande, R.S. Mane, and S.H. Han, Appl. Surf. Sci. 245, 407 (2005).CrossRef
23.
Zurück zum Zitat S.B. Kim, W.W. Lee, J. Yi, and W.L. Park, ACS Appl. Mater. Interfaces 4, 3910 (2012).CrossRef S.B. Kim, W.W. Lee, J. Yi, and W.L. Park, ACS Appl. Mater. Interfaces 4, 3910 (2012).CrossRef
24.
Zurück zum Zitat Y. Zhang, F. Fang, C. Wang, and L.D. Wang, Polym. Compos. 35, 1204 (2014).CrossRef Y. Zhang, F. Fang, C. Wang, and L.D. Wang, Polym. Compos. 35, 1204 (2014).CrossRef
25.
Zurück zum Zitat Z.W. Liang, H. Cui, K. Wang, and P.H. Yang, CrystEngComm 14, 1723 (2012).CrossRef Z.W. Liang, H. Cui, K. Wang, and P.H. Yang, CrystEngComm 14, 1723 (2012).CrossRef
26.
Zurück zum Zitat S.Y. Lin, Z.K. Xu, C.L. Wang, and D.X. Zhao, Ceram. Int. 42, 16424 (2016).CrossRef S.Y. Lin, Z.K. Xu, C.L. Wang, and D.X. Zhao, Ceram. Int. 42, 16424 (2016).CrossRef
27.
Zurück zum Zitat S.S. Shinde, P.S. Shinde, C.H. Bhosale, and K.Y. Rajpure, J. Photochem. Photobiol. B 104, 425 (2011).CrossRef S.S. Shinde, P.S. Shinde, C.H. Bhosale, and K.Y. Rajpure, J. Photochem. Photobiol. B 104, 425 (2011).CrossRef
28.
Zurück zum Zitat P. Shukla, I. Fatimah, S.B. Wang, H.M. Ang, and M.O. Tadé, Catal. Today 157, 410 (2010).CrossRef P. Shukla, I. Fatimah, S.B. Wang, H.M. Ang, and M.O. Tadé, Catal. Today 157, 410 (2010).CrossRef
29.
Zurück zum Zitat N. Shah, K. Bhangaonkar, D.V. Pinjari, and S.T. Mhaske, J. Adv. Nanomater. 2, 133 (2017).CrossRef N. Shah, K. Bhangaonkar, D.V. Pinjari, and S.T. Mhaske, J. Adv. Nanomater. 2, 133 (2017).CrossRef
Metadaten
Titel
Electrodeposition of ZnO Nanorods with Synergistic Photocatalytic and Self-Cleaning Effects
verfasst von
Xinmeng Wang
Xueqin Li
Qi Zhang
Zicheng Lu
Haiping Song
Yongqian Wang
Publikationsdatum
07.06.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 8/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08958-w

Weitere Artikel der Ausgabe 8/2021

Journal of Electronic Materials 8/2021 Zur Ausgabe

Neuer Inhalt