Skip to main content

2020 | OriginalPaper | Buchkapitel

Electrolysis of Low-temperature Suspensions: An Update

verfasst von : Andrey Yasinskiy, Andrey Suzdaltsev, Sai Krishna Padamata, Petr Polyakov, Yuriy Zaikov

Erschienen in: Light Metals 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Among different “novel” technologies for eco–friendly aluminium production with zero greenhouse gas emissions, the electrolysis of alumina suspension (or slurry) based on halide melts deserves more attention than it got recently. The original idea of the slurry was first proposed by Theodor R. Beck and has been modified and developed basically by Petr V. Polyakov. This paper presents a comprehensive analysis of the current status of this technology, future opportunities, and the new experimental results, which have not been published yet. This overview covers the properties of high-temperature suspensions, including sedimentation behaviour and apparent electrical conductivity; anodic process on oxygen-evolving electrodes, including the polarization characteristics and the bubble behaviour at vertical anodes; cathodic process on wettable substrates; primary electrolysis results; and the general considerations touching upon the possible cell designs and the thermal balance. The future scope of the technology and possible applications are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Beck Th.R. and Brooks R. (1986) Method and apparatus of electrolytic reduction of alumina, Patent US4592812. Beck Th.R. and Brooks R. (1986) Method and apparatus of electrolytic reduction of alumina, Patent US4592812.
3.
Zurück zum Zitat Beck Th.R., MacRae C.M., and Wilson N.C. (2011) Metal anode performance in low–Temperature electrolytes for aluminium production, Met. & Mat. Trans. B, 42: 807–813. Beck Th.R., MacRae C.M., and Wilson N.C. (2011) Metal anode performance in low–Temperature electrolytes for aluminium production, Met. & Mat. Trans. B, 42: 807–813.
4.
Zurück zum Zitat Kovrov V.A., Khramov A.P., Zaikov Yu.P., Nekrasov V.N., and Ananyev M.V. (2011) Studies on the oxidation rate of metallic inert anodes by measuring the oxygen evolved in low–temperature aluminium electrolysis, J. Appl. Electrochem., 41:1301–1309. Kovrov V.A., Khramov A.P., Zaikov Yu.P., Nekrasov V.N., and Ananyev M.V. (2011) Studies on the oxidation rate of metallic inert anodes by measuring the oxygen evolved in low–temperature aluminium electrolysis, J. Appl. Electrochem., 41:1301–1309.
5.
Zurück zum Zitat DeYoung D.H. (1986) Solubilities of oxides for inert anodes in cryolite–based melts, Light Metals 1986:299–307. DeYoung D.H. (1986) Solubilities of oxides for inert anodes in cryolite–based melts, Light Metals 1986:299–307.
6.
Zurück zum Zitat Beck Th.R. and Brooks R. (1989) Electrolytic reduction of alumina, Patent US4865701. Beck Th.R. and Brooks R. (1989) Electrolytic reduction of alumina, Patent US4865701.
7.
Zurück zum Zitat Beck Th.R. and Brooks R. (1991) Electrolytic reduction of alumina, Patent US5006209. Beck Th.R. and Brooks R. (1991) Electrolytic reduction of alumina, Patent US5006209.
8.
Zurück zum Zitat Beck Th.R. (1994) Production of aluminium with low temperature fluoride melts, Light Metals 1994:417–423. Beck Th.R. (1994) Production of aluminium with low temperature fluoride melts, Light Metals 1994:417–423.
9.
Zurück zum Zitat Beck Th.R. (1995) A non–consumable anode for production of aluminium with low–temperature fluoride melts, Light Metals 1995:355–360. Beck Th.R. (1995) A non–consumable anode for production of aluminium with low–temperature fluoride melts, Light Metals 1995:355–360.
10.
Zurück zum Zitat Brown C.W. (2000) Laboratory experiments with low–temperature slurry–electrolyte alumina reduction cells, Light Metals 2000:391–396. Brown C.W. (2000) Laboratory experiments with low–temperature slurry–electrolyte alumina reduction cells, Light Metals 2000:391–396.
11.
Zurück zum Zitat Brown C.W. (1998) The wettability of TiB2–based cathodes in low–temperature slurry–electrolyte reduction cells, JOM, 50(5): 38–40. Brown C.W. (1998) The wettability of TiB2–based cathodes in low–temperature slurry–electrolyte reduction cells, JOM, 50(5): 38–40.
12.
Zurück zum Zitat Welch B.J. (1999) Aluminium production paths in the new millennium, JOM, 51(5):24–28. Welch B.J. (1999) Aluminium production paths in the new millennium, JOM, 51(5):24–28.
13.
Zurück zum Zitat Tabereaux A. (2007) Aluminium industry upgrade set in motion by new wave of high amperage prebakes, Light Metal Age, 2007:28–30. Tabereaux A. (2007) Aluminium industry upgrade set in motion by new wave of high amperage prebakes, Light Metal Age, 2007:28–30.
14.
Zurück zum Zitat Polyakov P.V., Blinov V.A., Voinich A.L., Simakov D.A., and Gusev A.O. (2008) Electrolysis of thickened alumina slurry as a method of Hall–Heroult process update, J. Siberian Federal University. Engineering & Technologies, 2008(1):135–154. Polyakov P.V., Blinov V.A., Voinich A.L., Simakov D.A., and Gusev A.O. (2008) Electrolysis of thickened alumina slurry as a method of Hall–Heroult process update, J. Siberian Federal University. Engineering & Technologies, 2008(1):135–154.
15.
Zurück zum Zitat Polyakov P.V. and Simakov D.A. (2004) Method of production of metals by electrolysis of the molten salts, Patent RU2274680C2. Polyakov P.V. and Simakov D.A. (2004) Method of production of metals by electrolysis of the molten salts, Patent RU2274680C2.
16.
Zurück zum Zitat Polyakov P.V., Klyuchantsev A.B., Yasinskiy A.S., and Popov Y.N. (2016) Conception of “Dream Cell” in aluminium electrolysis, Light Metals 2016:283–288. Polyakov P.V., Klyuchantsev A.B., Yasinskiy A.S., and Popov Y.N. (2016) Conception of “Dream Cell” in aluminium electrolysis, Light Metals 2016:283–288.
17.
Zurück zum Zitat Thonstad J., Fellner P., Haarberg G.M., Hives J., Kvande H., and Sterten A. (2001) Aluminium electrolysis. Fundamentals of the Hall–Heroult process. 3 ed. Dusseldorf, Aluminium–Verlag Marketing & Kommunikation GmbH, 354 p. Thonstad J., Fellner P., Haarberg G.M., Hives J., Kvande H., and Sterten A. (2001) Aluminium electrolysis. Fundamentals of the Hall–Heroult process. 3 ed. Dusseldorf, Aluminium–Verlag Marketing & Kommunikation GmbH, 354 p.
18.
Zurück zum Zitat Danielik V. (2005) Phase equilibria in the system KF–AlF3–Al2O3, Chemical Papers, 59(2):81–84. Danielik V. (2005) Phase equilibria in the system KF–AlF3–Al2O3, Chemical Papers, 59(2):81–84.
19.
Zurück zum Zitat Apisarov A., Dedyukhin A., Nikolaeva E., Tinghaev P., Tkacheva O., Redkin A., and Zaikov Y. (2010) Liquidus temperatures of cryolite melts with low cryolite ratio, Light Metals 2010:395–398. Apisarov A., Dedyukhin A., Nikolaeva E., Tinghaev P., Tkacheva O., Redkin A., and Zaikov Y. (2010) Liquidus temperatures of cryolite melts with low cryolite ratio, Light Metals 2010:395–398.
20.
Zurück zum Zitat Robert E., Olsen J.E., Danek V., Tixhon E., Ostvold T., and Gilbert B. (1997) Structure and thermodynamics of alkali fluoride–aluminium fluoride–alumina melts. Vapor pressure, solubility, and Raman spectroscopic studies, J. Phys. Chem. B, 101:9447–9457. Robert E., Olsen J.E., Danek V., Tixhon E., Ostvold T., and Gilbert B. (1997) Structure and thermodynamics of alkali fluoride–aluminium fluoride–alumina melts. Vapor pressure, solubility, and Raman spectroscopic studies, J. Phys. Chem. B, 101:9447–9457.
21.
Zurück zum Zitat Apisarov A.P., Dedyukhin A.E., Redkin A.A., Tkacheva O.Yu., and Zaikov Yu.P. (2010) Physicochemical properties of KF–NaF–AlF3 molten electrolytes, Rus. J. Electrochem., 46:633–639. Apisarov A.P., Dedyukhin A.E., Redkin A.A., Tkacheva O.Yu., and Zaikov Yu.P. (2010) Physicochemical properties of KF–NaF–AlF3 molten electrolytes, Rus. J. Electrochem., 46:633–639.
22.
Zurück zum Zitat Frazer E.J. and Thonstad J. (2010) Alumina solubility and diffusion coefficient of the dissolved alumina species in low–temperature fluoride electrolytes, Met. & Mat. Trans. B, 41:543–548. Frazer E.J. and Thonstad J. (2010) Alumina solubility and diffusion coefficient of the dissolved alumina species in low–temperature fluoride electrolytes, Met. & Mat. Trans. B, 41:543–548.
23.
Zurück zum Zitat Isaeva L.A., Mikhalev Yu.G., Polyakov P.V., and Muratov A.M. (1999) The dissolution rate of alumina with various properties and the temperature responses of the electrolyte, Tsvetnye metally, 1999(10):40–43. Isaeva L.A., Mikhalev Yu.G., Polyakov P.V., and Muratov A.M. (1999) The dissolution rate of alumina with various properties and the temperature responses of the electrolyte, Tsvetnye metally, 1999(10):40–43.
24.
Zurück zum Zitat Isaeva L.A., Braslavskii A.B., Polyakov P.V. (2009) Effect of the content of the α–phase and granulometric composition on the dissolution rate of alumina in cryolite–alumina melts, Rus. J. Non–Ferrous Metals, 50(6):600–605. Isaeva L.A., Braslavskii A.B., Polyakov P.V. (2009) Effect of the content of the α–phase and granulometric composition on the dissolution rate of alumina in cryolite–alumina melts, Rus. J. Non–Ferrous Metals, 50(6):600–605.
25.
Zurück zum Zitat Haverkamp R.G., Welch B.J., and Metson J.B. (1992) Models of alumina dissolution in cryolite, Proc. Electrochemical Society, PV 1992–16:646–659. Haverkamp R.G., Welch B.J., and Metson J.B. (1992) Models of alumina dissolution in cryolite, Proc. Electrochemical Society, PV 1992–16:646–659.
26.
Zurück zum Zitat Yasinskiy A.S., Polyakov P.V., Yushkova O.V., and Sigov V.A. (2018) Spatial particle distribution during Stokes sedimentation of alumina in high temperature concentrated suspension–electrolyte for aluminium production, Tsvetnye Metally. 2018(2):45–50. Yasinskiy A.S., Polyakov P.V., Yushkova O.V., and Sigov V.A. (2018) Spatial particle distribution during Stokes sedimentation of alumina in high temperature concentrated suspension–electrolyte for aluminium production, Tsvetnye Metally. 2018(2):45–50.
27.
Zurück zum Zitat Yasinskiy A.S., Polyakov P.V., Voyshel Y.V., Gilmanshina T.R., Padamata S.K. (2018), Sedimentation behaviour of high–temperature concentrated colloidal suspension based on potassium cryolite, J. Dispersion Sci. & Tech., 39:1492–1501. Yasinskiy A.S., Polyakov P.V., Voyshel Y.V., Gilmanshina T.R., Padamata S.K. (2018), Sedimentation behaviour of high–temperature concentrated colloidal suspension based on potassium cryolite, J. Dispersion Sci. & Tech., 39:1492–1501.
28.
Zurück zum Zitat Kryukovsky V.A., Frolov A.V., Tkatcheva O.Yu., Redkin A.A., Zaikov Yu.P., Khokhlov V.A., and Apisarov A.P. (2006), Electrical conductivity of low melting cryolite melts, Light Metals 2006:409–413. Kryukovsky V.A., Frolov A.V., Tkatcheva O.Yu., Redkin A.A., Zaikov Yu.P., Khokhlov V.A., and Apisarov A.P. (2006), Electrical conductivity of low melting cryolite melts, Light Metals 2006:409–413.
29.
Zurück zum Zitat Bakin K.B., Simakova O.N., Polyakov P.V., Mikhalev Yu.G., Simakov D.A., and Gusev A.O. (2011) Electroconductivity slurry–electrolyte of the molten system NaF–AlF3–CaF2–Al2O3, J. Siberian Federal University. Engineering & Technologies, 2011(4):162–169. Bakin K.B., Simakova O.N., Polyakov P.V., Mikhalev Yu.G., Simakov D.A., and Gusev A.O. (2011) Electroconductivity slurry–electrolyte of the molten system NaF–AlF3–CaF2–Al2O3, J. Siberian Federal University. Engineering & Technologies, 2011(4):162–169.
30.
Zurück zum Zitat Vaskova Z., Kontrik M., Mlynarikova J., and Boca M. (2015) Density of low–temperature KF–AlF3 aluminium baths with Al2O3 and AlPO4 additives, Met. & Mat. Trans. B, 46:485–493. Vaskova Z., Kontrik M., Mlynarikova J., and Boca M. (2015) Density of low–temperature KF–AlF3 aluminium baths with Al2O3 and AlPO4 additives, Met. & Mat. Trans. B, 46:485–493.
31.
Zurück zum Zitat Cassayre L., Palau P., Chamelot P., Massot L. (2010) Properties of low–temperature melting electrolytes for the aluminium electrolysis process: A review // J. Chem. Eng. Data, 55:4549–4560. Cassayre L., Palau P., Chamelot P., Massot L. (2010) Properties of low–temperature melting electrolytes for the aluminium electrolysis process: A review // J. Chem. Eng. Data, 55:4549–4560.
32.
Zurück zum Zitat Silny A., Chrenkova M., Danek V., Vasiljev R., Nguyen D.K., and Thonstad J. (2004) Density, viscosity, surface tension, and interfacial tension in the systems NaF(KF) + AlF3, J. Chem. Eng. Data, 49:1542–1545. Silny A., Chrenkova M., Danek V., Vasiljev R., Nguyen D.K., and Thonstad J. (2004) Density, viscosity, surface tension, and interfacial tension in the systems NaF(KF) + AlF3, J. Chem. Eng. Data, 49:1542–1545.
33.
Zurück zum Zitat Thonstad J., Kisza A., and Hives J. (2006) Anode overvoltage on metallic inert anodes in low–melting bath, Light Metals 2006:373–377. Thonstad J., Kisza A., and Hives J. (2006) Anode overvoltage on metallic inert anodes in low–melting bath, Light Metals 2006:373–377.
34.
Zurück zum Zitat Nekrasov V.N., Limanovskaya O.V., Suzdaltsev A.V., Khramov A.P., and Zaikov Yu.P. (2014) Stationary anodic process at platinum in KF–NaF–AlF3–Al2O3 melts, Rus. Met. (Metally), 2014(8):664–670. Nekrasov V.N., Limanovskaya O.V., Suzdaltsev A.V., Khramov A.P., and Zaikov Yu.P. (2014) Stationary anodic process at platinum in KF–NaF–AlF3–Al2O3 melts, Rus. Met. (Metally), 2014(8):664–670.
35.
Zurück zum Zitat Suzdaltsev A.V., Khramov A.P., Kovrov V.A., Limanovskaya O.V., Nekrasov V.N., and Zaikov Yu.P. (2016) Voltammetric and chronopotentiometric study of nonstationary processes at the oxygen–evolving anodes in KF–NaF–AlF3–Al2O3 melt, Mat. Sci. Forum, 844:19–26. Suzdaltsev A.V., Khramov A.P., Kovrov V.A., Limanovskaya O.V., Nekrasov V.N., and Zaikov Yu.P. (2016) Voltammetric and chronopotentiometric study of nonstationary processes at the oxygen–evolving anodes in KF–NaF–AlF3–Al2O3 melt, Mat. Sci. Forum, 844:19–26.
36.
Zurück zum Zitat Padamata S.K., Yasinskiy A.S., and Polyakov P.V. (2018) Progress of inert anodes in aluminium industry: Review, J. Siberian Federal University. Chemistry, 2018(11):18–30. Padamata S.K., Yasinskiy A.S., and Polyakov P.V. (2018) Progress of inert anodes in aluminium industry: Review, J. Siberian Federal University. Chemistry, 2018(11):18–30.
37.
Zurück zum Zitat Nekrasov V.N., Suzdaltsev A.V., Limanovskaya O.V., Khramov A.P., and Zaikov Yu.P. (2012) Theoretical and experimental study of anode process on carbon in KF–AlF3–Al2O3 melts, Electrochimica Acta, 75:296–304. Nekrasov V.N., Suzdaltsev A.V., Limanovskaya O.V., Khramov A.P., and Zaikov Yu.P. (2012) Theoretical and experimental study of anode process on carbon in KF–AlF3–Al2O3 melts, Electrochimica Acta, 75:296–304.
38.
Zurück zum Zitat Yasinskiy A.S., Padamata S.K., Polyakov P.V., and Vinogradov O.O. (2019) Anodic process on aluminium bronze in low–temperature cryolite–alumina melts and suspensions, Tsvetnye Metally, 2019(9):37–44. Yasinskiy A.S., Padamata S.K., Polyakov P.V., and Vinogradov O.O. (2019) Anodic process on aluminium bronze in low–temperature cryolite–alumina melts and suspensions, Tsvetnye Metally, 2019(9):37–44.
40.
Zurück zum Zitat Yasinskiy A.S., Vlasov A.A., Polyakov P.V., and Solopov I.V. (2016) Impact of alumina partial density on the process conditions of aluminium reduction from cryolite–alumina slurry parameters, Tsvetnye Metally, 2016(12):33–38. Yasinskiy A.S., Vlasov A.A., Polyakov P.V., and Solopov I.V. (2016) Impact of alumina partial density on the process conditions of aluminium reduction from cryolite–alumina slurry parameters, Tsvetnye Metally, 2016(12):33–38.
41.
Zurück zum Zitat Yasinskiy A.S., Polyakov P.V., and Klyuchantsev A.B. (2017) Motion dynamics of anodic gas in the cryolite melt–alumina high–temperature slurry, Rus. J. Non–Ferrous Metals, 58(2):109–113. Yasinskiy A.S., Polyakov P.V., and Klyuchantsev A.B. (2017) Motion dynamics of anodic gas in the cryolite melt–alumina high–temperature slurry, Rus. J. Non–Ferrous Metals, 58(2):109–113.
42.
Zurück zum Zitat Nikolaev A.Yu., Suzdaltsev A.V., and Zaikov Yu.P. (2019) Cathode process in the KF–AlF3–Al2O3 melts, J. Electrochem. Soc. 166(15):D784–D791. Nikolaev A.Yu., Suzdaltsev A.V., and Zaikov Yu.P. (2019) Cathode process in the KF–AlF3–Al2O3 melts, J. Electrochem. Soc. 166(15):D784–D791.
43.
Zurück zum Zitat Nikolaev A.Yu., Suzdaltsev A.V., Polyakov P.V., and Zaikov Yu.P. (2017) Cathode process at the electrolysis of KF–AlF3–Al2O3 melts and suspensions, J. Electrochem. Soc., 164(8):H5315–H5321. Nikolaev A.Yu., Suzdaltsev A.V., Polyakov P.V., and Zaikov Yu.P. (2017) Cathode process at the electrolysis of KF–AlF3–Al2O3 melts and suspensions, J. Electrochem. Soc., 164(8):H5315–H5321.
44.
Zurück zum Zitat Wei Zh., Peng J., Wang Y., Liu K., Di Yu., and Sun T. (2019) Cathodic process of aluminium deposition in NaF–AlF3–Al2O3 melts with low cryolite ratio, Ionics, 25:1735–1745. Wei Zh., Peng J., Wang Y., Liu K., Di Yu., and Sun T. (2019) Cathodic process of aluminium deposition in NaF–AlF3–Al2O3 melts with low cryolite ratio, Ionics, 25:1735–1745.
45.
Zurück zum Zitat Yasinskiy A.S., Padamata S.K., Polyakov P.V., Varyukhin D.Yu. (2019) Electrochemical characterization of the liquid aluminium bipolar electrode for extraction of noble metals from spent catalysts, Non–Ferrous Metals, 2: in press. Yasinskiy A.S., Padamata S.K., Polyakov P.V., Varyukhin D.Yu. (2019) Electrochemical characterization of the liquid aluminium bipolar electrode for extraction of noble metals from spent catalysts, Non–Ferrous Metals, 2: in press.
46.
Zurück zum Zitat Simakov D.A. (2006) Studying peculiarities of electrolysis of alumina suspensions in fluoride melts in purpose of improving the Hall–Heroult process [In Russ], dissertation…cand.sc. Krasnoyarsk. Simakov D.A. (2006) Studying peculiarities of electrolysis of alumina suspensions in fluoride melts in purpose of improving the Hall–Heroult process [In Russ], dissertation…cand.sc. Krasnoyarsk.
47.
Zurück zum Zitat Padamata, S.K.; Yasinskiy, A.S., Polyakov, P.V. (2019) Electrolytes and its additives used in aluminium reduction cell: a review, Metallurgical Research & Technology, 116(4):410. Padamata, S.K.; Yasinskiy, A.S., Polyakov, P.V. (2019) Electrolytes and its additives used in aluminium reduction cell: a review, Metallurgical Research & Technology, 116(4):410.
48.
Zurück zum Zitat Yasinskiy A.S., Polyakov P.V. (2016) Investigation of bubble behaviour at cryolite melt—alumina slurry electrolysis, J. Siberian Federal University. Engineering & Technologies, 9 (6): 854–871. Yasinskiy A.S., Polyakov P.V. (2016) Investigation of bubble behaviour at cryolite melt—alumina slurry electrolysis, J. Siberian Federal University. Engineering & Technologies, 9 (6): 854–871.
Metadaten
Titel
Electrolysis of Low-temperature Suspensions: An Update
verfasst von
Andrey Yasinskiy
Andrey Suzdaltsev
Sai Krishna Padamata
Petr Polyakov
Yuriy Zaikov
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-36408-3_85

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.