Skip to main content
Erschienen in: Journal of Materials Science 1/2016

27.08.2015 | 50th Anniversary

Electron microscopy observations of the spinel-forming reaction using MgO nanocubes on Al2O3 substrates

verfasst von: Jonathan P. Winterstein, M. Sezen, A. Rečnik, C. Barry Carter

Erschienen in: Journal of Materials Science | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The morphology evolution and associated topotactic relations between MgO nanocubes deposited on electron-transparent Al2O3 substrates were monitored after repeated high-temperature ex situ heat treatments. Owing to the well-defined morphology of MgO smoke cubes and flat basal-plane-oriented substrate, the initial orientation relationship is constrained to be {100}MgO || (0001)sapphire. In this geometry, only one rotational degree of freedom is allowed for MgO particles, and hence, a full set of coincident site lattices are formed, providing the opportunity to examine thermodynamic and kinetic processes and track competing surface and bulk ion-diffusion mechanisms during spinel formation. Crystallographic orientation relationships (ORs) between the sapphire (Al2O3) substrate, the magnesia (MgO) smoke nanoparticles, and the MgAl2O4 spinel reaction products were studied before and after annealing in the temperature range between 1000 and 1100 °C. The ORs adopted between the different pairs of materials were studied using single (0001)-oriented sapphire crystals pre-thinned for transmission electron microscopy (TEM) observations; the spinel/sapphire interface was further investigated on cross-section TEM specimens prepared from bulk samples using the focused ion-beam technique. At temperatures below ~1050 °C, the prevailing OR is \( \left\langle {110} \right\rangle \cdot \left\{ {111} \right\}_{\text{spinel}} //\left\langle {10\bar{1}0} \right\rangle \cdot \left( {0001} \right)_{\text{sapphire}} , \) whereas above that temperature \( \left\langle {110} \right\rangle \cdot \left\{ {100} \right\}_{\text{spinel}} //\left\langle {10\bar{1}0} \right\rangle \cdot \left( {0001} \right)_{\text{sapphire}} \) becomes more common. With the increasing temperature also the morphology of the spinel product is transformed from hexahedral to octahedral. The different ORs and microstructures appear to depend on the reaction temperature and result in different dominating diffusion mechanisms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schmalzried H (1981) Solid-state reactions, 2nd edn. Verlag Chemie, New York Schmalzried H (1981) Solid-state reactions, 2nd edn. Verlag Chemie, New York
2.
Zurück zum Zitat Rossi RC, Fulrath RM (1963) Epitaxial growth of spinel by reaction in the solid-state. J Am Ceram Soc 46(3):145–149CrossRef Rossi RC, Fulrath RM (1963) Epitaxial growth of spinel by reaction in the solid-state. J Am Ceram Soc 46(3):145–149CrossRef
3.
Zurück zum Zitat Carter RE (1961) Mechanism of solid-state reaction between magnesium oxide and aluminum oxide and between magnesium oxide and ferric oxide. J Am Ceram Soc 44(3):116–120CrossRef Carter RE (1961) Mechanism of solid-state reaction between magnesium oxide and aluminum oxide and between magnesium oxide and ferric oxide. J Am Ceram Soc 44(3):116–120CrossRef
4.
Zurück zum Zitat Navias L (1961) Preparation and properties of spinel made by vapor transport and diffusion in the system MgO–Al2O3. J Am Ceram Soc 44(9):434–446CrossRef Navias L (1961) Preparation and properties of spinel made by vapor transport and diffusion in the system MgO–Al2O3. J Am Ceram Soc 44(9):434–446CrossRef
5.
Zurück zum Zitat Kotula PG (1995) Ceramic thin-film reactions: nucleation and kinetics. University of Minnesota, Minneapolis Kotula PG (1995) Ceramic thin-film reactions: nucleation and kinetics. University of Minnesota, Minneapolis
6.
Zurück zum Zitat Kotula PG, Carter CB (1998) Kinetics of thin-film reactions of nickel oxide with alumina: II, {1100} and {1102} reaction couples. J Am Ceram Soc 81(11):2877–2884CrossRef Kotula PG, Carter CB (1998) Kinetics of thin-film reactions of nickel oxide with alumina: II, {1100} and {1102} reaction couples. J Am Ceram Soc 81(11):2877–2884CrossRef
7.
Zurück zum Zitat Kotula PG, Carter CB (1998) Kinetics of thin-film reactions of nickel oxide with alumina: I, (0001) and {1120} reaction couples. J Am Ceram Soc 81(11):2869–2876CrossRef Kotula PG, Carter CB (1998) Kinetics of thin-film reactions of nickel oxide with alumina: I, (0001) and {1120} reaction couples. J Am Ceram Soc 81(11):2869–2876CrossRef
8.
Zurück zum Zitat Kotula PG, Johnson MT, Carter CB (1998) Thin-film reactions. Z Phys Chem 206:73–99CrossRef Kotula PG, Johnson MT, Carter CB (1998) Thin-film reactions. Z Phys Chem 206:73–99CrossRef
9.
Zurück zum Zitat Summerfelt SR, Carter CB (1992) Morphology of NiFe2O4 precipitation in NiO. Acta Metall 40(5):1051–1067CrossRef Summerfelt SR, Carter CB (1992) Morphology of NiFe2O4 precipitation in NiO. Acta Metall 40(5):1051–1067CrossRef
10.
Zurück zum Zitat Summerfelt SR, Carter CB (1992) Kinetics of NiFe2O4 precipitation in NiO. J Am Ceram Soc 75(8):2244–2250CrossRef Summerfelt SR, Carter CB (1992) Kinetics of NiFe2O4 precipitation in NiO. J Am Ceram Soc 75(8):2244–2250CrossRef
11.
Zurück zum Zitat Summerfelt SR, Carter CB (1992) Direct observation of nucleation embryos during NiFe2O4 precipitation in NiO. J Mater Res 7(5):1271–1277CrossRef Summerfelt SR, Carter CB (1992) Direct observation of nucleation embryos during NiFe2O4 precipitation in NiO. J Mater Res 7(5):1271–1277CrossRef
12.
Zurück zum Zitat Summerfelt SR, Carter CB (1992) Dissolution of NiFe2O4 particles in an NiO matrix. Acta Metall 40(10):2799–2804CrossRef Summerfelt SR, Carter CB (1992) Dissolution of NiFe2O4 particles in an NiO matrix. Acta Metall 40(10):2799–2804CrossRef
13.
Zurück zum Zitat Carter CB, Rasmussen YK (1994) Growth of spinel particles on alumina thin films–I. Orientation relationships and shape of the particles. Acta Metall Mater 42(8):2729–2740CrossRef Carter CB, Rasmussen YK (1994) Growth of spinel particles on alumina thin films–I. Orientation relationships and shape of the particles. Acta Metall Mater 42(8):2729–2740CrossRef
14.
Zurück zum Zitat Ramamurthy S, Carter CB (1998) The {111}/{100} interface in cubic materials and related systems. Phys Stat Sol A 166(1):37–55CrossRef Ramamurthy S, Carter CB (1998) The {111}/{100} interface in cubic materials and related systems. Phys Stat Sol A 166(1):37–55CrossRef
15.
Zurück zum Zitat Hesse D, Senz S, Scholz R, Werner P, Heydenreich J (1994) Structure and morphology of the reaction fronts during the formation of MgAl2O4 Thin films by solid state reaction between R-cut Al2O3 substrates and MgO films. Interface Sci 2:221–237 Hesse D, Senz S, Scholz R, Werner P, Heydenreich J (1994) Structure and morphology of the reaction fronts during the formation of MgAl2O4 Thin films by solid state reaction between R-cut Al2O3 substrates and MgO films. Interface Sci 2:221–237
16.
Zurück zum Zitat Li DX, Pirouz P, Heuer AH, Yadavalli S, Flynn CP (1992) A high-resolution electron microscopy study of MgO/Al2O3 interfaces and MgAl2O4 spinel formation. Philos Mag A 65(2):403–425CrossRef Li DX, Pirouz P, Heuer AH, Yadavalli S, Flynn CP (1992) A high-resolution electron microscopy study of MgO/Al2O3 interfaces and MgAl2O4 spinel formation. Philos Mag A 65(2):403–425CrossRef
17.
Zurück zum Zitat Heidenreich RD (1942) Electron reflections in MgO crystals with the electron microscope. Phys Rev 62:291–292CrossRef Heidenreich RD (1942) Electron reflections in MgO crystals with the electron microscope. Phys Rev 62:291–292CrossRef
18.
Zurück zum Zitat Cowley JM (1982) Energy losses of fast electrons at crystal surfaces. Phys Rev B 25(2):1401–1404CrossRef Cowley JM (1982) Energy losses of fast electrons at crystal surfaces. Phys Rev B 25(2):1401–1404CrossRef
19.
Zurück zum Zitat Pikhitsa PV, Kim C, Chae S, Shin S, Jung S, Kitaura M, S-i Kimura, Fukui K, Choi M (2015) Two-band luminescence from an intrinsic defect in spherical and terraced MgO nanoparticles. Appl Phys Lett 106(18):183106. doi:10.1063/1.4918804 CrossRef Pikhitsa PV, Kim C, Chae S, Shin S, Jung S, Kitaura M, S-i Kimura, Fukui K, Choi M (2015) Two-band luminescence from an intrinsic defect in spherical and terraced MgO nanoparticles. Appl Phys Lett 106(18):183106. doi:10.​1063/​1.​4918804 CrossRef
22.
25.
Zurück zum Zitat Glaspell G, Hassan HMA, Elzatahry A, Fuoco L, Radwan NRE, El-Shall MS (2006) Nanocatalysis on tailored shape supports: Au and Pd nanoparticles supported on MgO nanocubes and ZnO nanobelts. J Phys Chem B 110(43):21387–21393. doi:10.1021/jp0651034 CrossRef Glaspell G, Hassan HMA, Elzatahry A, Fuoco L, Radwan NRE, El-Shall MS (2006) Nanocatalysis on tailored shape supports: Au and Pd nanoparticles supported on MgO nanocubes and ZnO nanobelts. J Phys Chem B 110(43):21387–21393. doi:10.​1021/​jp0651034 CrossRef
27.
Zurück zum Zitat Chaudhari P, Matthews JW (1971) Coincidence twist boundaries between crystalline smoke particles. J Appl Phys 42(6):3063–3066CrossRef Chaudhari P, Matthews JW (1971) Coincidence twist boundaries between crystalline smoke particles. J Appl Phys 42(6):3063–3066CrossRef
29.
Zurück zum Zitat Gao Y, Shewmon P, Dregia SA (1988) Coincidence interphase boundaries in MgO/Ni system. Scripta Metall 22:1521–1526CrossRef Gao Y, Shewmon P, Dregia SA (1988) Coincidence interphase boundaries in MgO/Ni system. Scripta Metall 22:1521–1526CrossRef
30.
Zurück zum Zitat Kuhn H, Baerˆ G, Gleiter H (1979) On the energy-misorientation relationship of grain boundaries. Acta Metall Mater 27:959–963CrossRef Kuhn H, Baerˆ G, Gleiter H (1979) On the energy-misorientation relationship of grain boundaries. Acta Metall Mater 27:959–963CrossRef
31.
Zurück zum Zitat Peterson NL, Wiley CL, Faber J (1981) Low-energy grain boundaries in NiO. Adv Ceram 1:101–105 Peterson NL, Wiley CL, Faber J (1981) Low-energy grain boundaries in NiO. Adv Ceram 1:101–105
32.
Zurück zum Zitat Simpson YK, Carter CB (1986) A new approach to the study of solid-state reactions. Philos Mag Lett A53(1):1–6CrossRef Simpson YK, Carter CB (1986) A new approach to the study of solid-state reactions. Philos Mag Lett A53(1):1–6CrossRef
33.
Zurück zum Zitat Sajgalik P, Panek Z, Uhrik M (1987) The surface diffusion coefficients of MgO and Al2O3. J Mater Sci 22:4460–4464CrossRef Sajgalik P, Panek Z, Uhrik M (1987) The surface diffusion coefficients of MgO and Al2O3. J Mater Sci 22:4460–4464CrossRef
34.
Zurück zum Zitat Stadelmann PA (1987) EMS—a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicrosc 21(2):131–145CrossRef Stadelmann PA (1987) EMS—a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicrosc 21(2):131–145CrossRef
35.
Zurück zum Zitat Lewis MH (1966) Defects in spinel crystals grown by the Verneuil process. Philos Mag 14(131):1003–1018CrossRef Lewis MH (1966) Defects in spinel crystals grown by the Verneuil process. Philos Mag 14(131):1003–1018CrossRef
36.
Zurück zum Zitat Kotula PG, Carter CB (1996) Interfacial control of reaction kinetics in oxides. Phys Rev Lett 77(16):3367–3370CrossRef Kotula PG, Carter CB (1996) Interfacial control of reaction kinetics in oxides. Phys Rev Lett 77(16):3367–3370CrossRef
37.
Zurück zum Zitat Carter CB, Schmalzried H (1985) The growth of spinel into Al2O3. Philos Mag A 52(2):207–224CrossRef Carter CB, Schmalzried H (1985) The growth of spinel into Al2O3. Philos Mag A 52(2):207–224CrossRef
Metadaten
Titel
Electron microscopy observations of the spinel-forming reaction using MgO nanocubes on Al2O3 substrates
verfasst von
Jonathan P. Winterstein
M. Sezen
A. Rečnik
C. Barry Carter
Publikationsdatum
27.08.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 1/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9366-5

Weitere Artikel der Ausgabe 1/2016

Journal of Materials Science 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.