Skip to main content
Erschienen in: Physics of Metals and Metallography 6/2020

01.06.2020 | ELECTRICAL AND MAGNETIC PROPERTIES

Electronic States and Optical Spectra of ErSn1.1Ge0.9 and TmSn1.1Ge0.9 Compounds

verfasst von: Yu. V. Knyazev, A. V. Lukoyanov, Yu. I. Kuzmin, R. D. Mukhachev, Sachin Gupta, K. G. Suresh

Erschienen in: Physics of Metals and Metallography | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The spin-polarized electronic structure, magnetic moments, and spectra of optical conductivity of the ternary ErSn1.1Ge0.9 and TmSn1.1Ge0.9 compounds have been calculated within the GGA+U method, taking into account strong electron correlations in the 4f-shell of Er and Tm, as well as non-stoichiometry of compositions. The calculation results pointed to antiferromagnetic ordering for both intermetallics with effective magnetic moments that precisely reproduce the published experimental values. Optical properties of these compounds were measured using the ellipsometric method in the energy range of 0.078–5.64 eV. It has been shown that the main peculiarities of experimental curves are described by calculated densities of electronic states. The good agreement of magnetic moments and interband optical conductivities, which are calculated from first principles, with the experimental data indicates the importance of accounting for the strong electron correlations and non-stoichiometry of compositions in calculations of electronic structure of the RSn1.1Ge0.9-type compounds containing heavy rare-earth metals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Gupta and K. G. Suresh, “Review on magnetic and related properties of RTX compounds,” J. Alloys Compd. 618, 562–606 (2015).CrossRef S. Gupta and K. G. Suresh, “Review on magnetic and related properties of RTX compounds,” J. Alloys Compd. 618, 562–606 (2015).CrossRef
2.
Zurück zum Zitat V. Franco, J. S. Blazquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: From materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018).CrossRef V. Franco, J. S. Blazquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: From materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018).CrossRef
3.
Zurück zum Zitat K. Łątka, R. Kmieć, R. Kruk, A. W. Pacyna, M. Rams, T. Schmidt, and R. Pöttgen, “Exotic phase transitions in RERhSn compounds,” Nucleonika 48, 35–40 (2003). K. Łątka, R. Kmieć, R. Kruk, A. W. Pacyna, M. Rams, T. Schmidt, and R. Pöttgen, “Exotic phase transitions in RERhSn compounds,” Nucleonika 48, 35–40 (2003).
4.
Zurück zum Zitat K. Łątka, R. Kmieć, A. W. Pacyna, and R. Pöttgen, “Electronic and magnetic properties of ternary stannides RERhSn (RE = light rare-earth metals),” J. Magn. Magn. Mater. 320, 18–20 (2008).CrossRef K. Łątka, R. Kmieć, A. W. Pacyna, and R. Pöttgen, “Electronic and magnetic properties of ternary stannides RERhSn (RE = light rare-earth metals),” J. Magn. Magn. Mater. 320, 18–20 (2008).CrossRef
5.
Zurück zum Zitat Y. Zhang, Q. Dong, X. Zheng, Y. Liu, S. Zuo, J. Xiong, B. Zhang, X. Zhao, R. Li, D. Liu, F. Hu, J. Sun, T. Zhao, and B. Shen, “Complex magnetic properties and large magnetocaloric effects in RCoGe (R = Tb, Dy) compounds,” AIP Adv. 8, 056418 (2018).CrossRef Y. Zhang, Q. Dong, X. Zheng, Y. Liu, S. Zuo, J. Xiong, B. Zhang, X. Zhao, R. Li, D. Liu, F. Hu, J. Sun, T. Zhao, and B. Shen, “Complex magnetic properties and large magnetocaloric effects in RCoGe (R = Tb, Dy) compounds,” AIP Adv. 8, 056418 (2018).CrossRef
6.
Zurück zum Zitat H. Yamaoka, P. Thunström, N. Tsujii, K. Katoh, Y. Yamamoto, E. F. Schwier, K. Shimada, H. Iwasawa, M. Arita, I. Jarrige, N. Hiraoka, H. Ishii, K. -D. Tsuei, and J. Mizuki, “Electronic structure of ferromagnetic heavy fermion, YbPdSi, YbPdGe, and YbPtGe studied by photoelectron spectroscopy, X-ray emission spectroscopy, and DFT  +  DMFT calculations,” J. Phys.: Condens. Matter 29, 475502 (2017). H. Yamaoka, P. Thunström, N. Tsujii, K. Katoh, Y. Yamamoto, E. F. Schwier, K. Shimada, H. Iwasawa, M. Arita, I. Jarrige, N. Hiraoka, H. Ishii, K. -D. Tsuei, and J. Mizuki, “Electronic structure of ferromagnetic heavy fermion, YbPdSi, YbPdGe, and YbPtGe studied by photoelectron spectroscopy, X-ray emission spectroscopy, and DFT  +  DMFT calculations,” J. Phys.: Condens. Matter 29, 475502 (2017).
7.
Zurück zum Zitat S. Gupta, K. G. Suresh, A. K. Nigam, and A. V. Lukoyanov, “Magnetism in RRhGe (R = Tb, Dy, Er, Tm): An experimental and theoretical study,” J. Alloys Compd. 640, 56–63 (2015).CrossRef S. Gupta, K. G. Suresh, A. K. Nigam, and A. V. Lukoyanov, “Magnetism in RRhGe (R = Tb, Dy, Er, Tm): An experimental and theoretical study,” J. Alloys Compd. 640, 56–63 (2015).CrossRef
8.
Zurück zum Zitat S. Gupta, K. G. Suresh, A. K. Nigam, Y. Mudryk, D. Paudyal, V. K. Pecharsky, and K. A. Gschneidner Jr., “The nature of the first order isostructural transition in GdRhSn,” J. Alloys Compd. 613, 280–287 (2014).CrossRef S. Gupta, K. G. Suresh, A. K. Nigam, Y. Mudryk, D. Paudyal, V. K. Pecharsky, and K. A. Gschneidner Jr., “The nature of the first order isostructural transition in GdRhSn,” J. Alloys Compd. 613, 280–287 (2014).CrossRef
9.
Zurück zum Zitat A. Oleaga, V. Liubachko, P. Manfrinetti, A. Provino, Yu. Vysochanskii, and A. Salazar, “Critical behavior study of NdScSi, NdScGe intermetallic compounds,” J. Alloys Compd. 723, 559–566 (2017).CrossRef A. Oleaga, V. Liubachko, P. Manfrinetti, A. Provino, Yu. Vysochanskii, and A. Salazar, “Critical behavior study of NdScSi, NdScGe intermetallic compounds,” J. Alloys Compd. 723, 559–566 (2017).CrossRef
10.
Zurück zum Zitat S. Talakesh and Z. Nourbakhsh, “The density functional study of structural, electronic, magnetic and thermodynamic properties of XFeSi (X = Gd, Tb, La) and GdRuSi compounds,” J. Supercond. Novel. Magn. 30, 2143–2158 (2017).CrossRef S. Talakesh and Z. Nourbakhsh, “The density functional study of structural, electronic, magnetic and thermodynamic properties of XFeSi (X = Gd, Tb, La) and GdRuSi compounds,” J. Supercond. Novel. Magn. 30, 2143–2158 (2017).CrossRef
11.
Zurück zum Zitat J. Chen, B. G. Shen, Q. Y. Dong, and J. R. Sun, “Giant magnetic entropy change in antiferromagnetic DyCuSi compound,” Solid State Commun. 150, 1429–1431 (2010).CrossRef J. Chen, B. G. Shen, Q. Y. Dong, and J. R. Sun, “Giant magnetic entropy change in antiferromagnetic DyCuSi compound,” Solid State Commun. 150, 1429–1431 (2010).CrossRef
12.
Zurück zum Zitat J. Chen, B. G. Shen, Q. Y. Dong, F. X. Hu, and J. R. Sun, “Giant reversible magnetocaloric effect in metamagnetic HoCuSi compound,” Appl. Phys. Lett. 96, 152501 (2010).CrossRef J. Chen, B. G. Shen, Q. Y. Dong, F. X. Hu, and J. R. Sun, “Giant reversible magnetocaloric effect in metamagnetic HoCuSi compound,” Appl. Phys. Lett. 96, 152501 (2010).CrossRef
13.
Zurück zum Zitat R. L. Souza, J. C. B. Monteiro, A. O. Santos, L. P. Cardoso, and L. M. Silva, “Large magnetocaloric effect in ErCoSn driven by metamagnetic phase transition and short-range ferromagnetic correlations,” J. Magn. Magn. Mater. 492, 165653 (2019).CrossRef R. L. Souza, J. C. B. Monteiro, A. O. Santos, L. P. Cardoso, and L. M. Silva, “Large magnetocaloric effect in ErCoSn driven by metamagnetic phase transition and short-range ferromagnetic correlations,” J. Magn. Magn. Mater. 492, 165653 (2019).CrossRef
14.
Zurück zum Zitat S. Gupta and K. G. Suresh, “Observation of giant magnetocaloric effect in HoCoSi,” Mater. Lett. 113, 195–197 (2013).CrossRef S. Gupta and K. G. Suresh, “Observation of giant magnetocaloric effect in HoCoSi,” Mater. Lett. 113, 195–197 (2013).CrossRef
15.
Zurück zum Zitat S. Gupta, K. G. Suresh, and A. K. Nigam, “Observation of large positive magnetoresistance and its sign reversal in GdRhGe,” J. Alloys Compd. 586, 600–604 (2014).CrossRef S. Gupta, K. G. Suresh, and A. K. Nigam, “Observation of large positive magnetoresistance and its sign reversal in GdRhGe,” J. Alloys Compd. 586, 600–604 (2014).CrossRef
16.
Zurück zum Zitat P. H. Tobash, J. J. Meyers, G. DiFilippo, S. Bobev, F. Ronning, J. D. Thompson, and J. L. Sarrao, “Structure and properties of a new family of nearly equiatomic rare-earth metal-tin-germanides RESn1 + xGe1 – x (RE = Y, Gd–Tm): An unusual example of site preferences between elements from the same group,“ Chem. Mater. 20, 2151–2159 (2008).CrossRef P. H. Tobash, J. J. Meyers, G. DiFilippo, S. Bobev, F. Ronning, J. D. Thompson, and J. L. Sarrao, “Structure and properties of a new family of nearly equiatomic rare-earth metal-tin-germanides RESn1 + xGe1 – x (RE = Y, Gd–Tm): An unusual example of site preferences between elements from the same group,“ Chem. Mater. 20, 2151–2159 (2008).CrossRef
17.
Zurück zum Zitat A. Gil, B. Penc, S. Baran, A. Hoser, and A. Szytuła, “Neutron diffraction studies of RSn1 + xGe1 – x (R = Tb–Er) compounds,” J. Solid State Chem. 184, 1631–1637 (2011).CrossRef A. Gil, B. Penc, S. Baran, A. Hoser, and A. Szytuła, “Neutron diffraction studies of RSn1 + xGe1 – x (R = Tb–Er) compounds,” J. Solid State Chem. 184, 1631–1637 (2011).CrossRef
18.
Zurück zum Zitat S. Gupta, V. R. Reddy, G. S. Okram, and K. G. Suresh, “A comparative study of HoSn1.1Ge0.9 and DySn1.1Ge0.9 compounds using magnetic, magneto-thermal and magneto-transport measurements,” J. Alloys Compd. 625, 107–112 (2015).CrossRef S. Gupta, V. R. Reddy, G. S. Okram, and K. G. Suresh, “A comparative study of HoSn1.1Ge0.9 and DySn1.1Ge0.9 compounds using magnetic, magneto-thermal and magneto-transport measurements,” J. Alloys Compd. 625, 107–112 (2015).CrossRef
19.
Zurück zum Zitat D. Kaczorowski and A. Szytuła, “Low-temperature physical properties of TmSnGe and LuSnGe,” J. Alloys Compd. 622, 640–643 (2015).CrossRef D. Kaczorowski and A. Szytuła, “Low-temperature physical properties of TmSnGe and LuSnGe,” J. Alloys Compd. 622, 640–643 (2015).CrossRef
20.
Zurück zum Zitat Yu. V. Knyazev, A. V. Lukoyanov, Yu. I. Kuz’min, S. Gupta, and K. G. Suresh, “Electronic structure of RSn1.1Ge0.9 (R = Dy, Ho) ternary compounds: Band calculation and optical properties,” Phys. B: Condens. Matter. 521, 98–101 (2017).CrossRef Yu. V. Knyazev, A. V. Lukoyanov, Yu. I. Kuz’min, S. Gupta, and K. G. Suresh, “Electronic structure of RSn1.1Ge0.9 (R = Dy, Ho) ternary compounds: Band calculation and optical properties,” Phys. B: Condens. Matter. 521, 98–101 (2017).CrossRef
21.
Zurück zum Zitat Yu. V. Knyazev, A. V. Lukoyanov, Yu. I. Kuz’min, S. Gupta, and K. G. Suresh, “Characterization of d and f electronic states in RSn1.1Ge0.9 (R = Gd, Tb) compounds by optical spectroscopy and electronic-structure calculations,” Phys. Status Solidi B 255, 1700579 (2018).CrossRef Yu. V. Knyazev, A. V. Lukoyanov, Yu. I. Kuz’min, S. Gupta, and K. G. Suresh, “Characterization of d and f electronic states in RSn1.1Ge0.9 (R = Gd, Tb) compounds by optical spectroscopy and electronic-structure calculations,” Phys. Status Solidi B 255, 1700579 (2018).CrossRef
22.
Zurück zum Zitat S. Gupta, K. G. Suresh, and A. K. Nigam, “Magnetic, magnetocaloric and magnetotransport properties of RSn1 + xGe1 – x compounds (R = Gd, Tb, and Er; x = 0.1),” J. Magn. Magn. Mater. 342, 61–68 (2013).CrossRef S. Gupta, K. G. Suresh, and A. K. Nigam, “Magnetic, magnetocaloric and magnetotransport properties of RSn1 + xGe1 – x compounds (R = Gd, Tb, and Er; x = 0.1),” J. Magn. Magn. Mater. 342, 61–68 (2013).CrossRef
23.
Zurück zum Zitat S. Gupta, L. Pal, and K. G. Suresh, “Enhancement of the magnetic entropy change on substitution of Ge in ErSn1.1Ge0.9,” J. Appl. Phys. 117, 17D102 (2015). S. Gupta, L. Pal, and K. G. Suresh, “Enhancement of the magnetic entropy change on substitution of Ge in ErSn1.1Ge0.9,” J. Appl. Phys. 117, 17D102 (2015).
24.
Zurück zum Zitat V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method,” J. Phys.: Condens. Matter. 9, 767–808 (1997). V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method,” J. Phys.: Condens. Matter. 9, 767–808 (1997).
25.
Zurück zum Zitat P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, CorsoA. Dal, S. de Gironcoli, P. Delugas, Jr., R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. -Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, “Advanced capabilities for materials modelling with Quantum ESPRESSO,” J. Phys.: Condens. Matter 29, 465901 (2017). P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, CorsoA. Dal, S. de Gironcoli, P. Delugas, Jr., R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. -Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, “Advanced capabilities for materials modelling with Quantum ESPRESSO,” J. Phys.: Condens. Matter 29, 465901 (2017).
26.
Zurück zum Zitat J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).CrossRef J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).CrossRef
27.
Zurück zum Zitat M. Topsakal and R. M. Wentzcovitch, “Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu),” Comput. Mater. Sci. 95, 263–270 (20140. M. Topsakal and R. M. Wentzcovitch, “Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu),” Comput. Mater. Sci. 95, 263–270 (20140.
28.
Zurück zum Zitat Yu. V. Knyazev, A. V. Lukoyanov, Yu. I. Kuz’min, S. Gupta, and K. G. Suresh, “Optical spectroscopy and electronic structure of TmRhGe compound,” Phys. Solid State 57, 2357–2360 (2015).CrossRef Yu. V. Knyazev, A. V. Lukoyanov, Yu. I. Kuz’min, S. Gupta, and K. G. Suresh, “Optical spectroscopy and electronic structure of TmRhGe compound,” Phys. Solid State 57, 2357–2360 (2015).CrossRef
29.
Zurück zum Zitat A. Gil, “The impact of d- and p-electron elements on magnetic properties of RTxX2 compounds,” Acta Phys. Pol., A 133, 473–476 (2018).CrossRef A. Gil, “The impact of d- and p-electron elements on magnetic properties of RTxX2 compounds,” Acta Phys. Pol., A 133, 473–476 (2018).CrossRef
30.
Zurück zum Zitat H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, New York, 2007).CrossRef H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, New York, 2007).CrossRef
31.
Zurück zum Zitat I. I. Mazin, D. J. Singh, and C. Ambrosch-Draxl, “Transport, optical, and electronic properties of the half-metal CrO2,” Phys. Rev. B 59, 411–418 (1999).CrossRef I. I. Mazin, D. J. Singh, and C. Ambrosch-Draxl, “Transport, optical, and electronic properties of the half-metal CrO2,” Phys. Rev. B 59, 411–418 (1999).CrossRef
Metadaten
Titel
Electronic States and Optical Spectra of ErSn1.1Ge0.9 and TmSn1.1Ge0.9 Compounds
verfasst von
Yu. V. Knyazev
A. V. Lukoyanov
Yu. I. Kuzmin
R. D. Mukhachev
Sachin Gupta
K. G. Suresh
Publikationsdatum
01.06.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 6/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20060083

Weitere Artikel der Ausgabe 6/2020

Physics of Metals and Metallography 6/2020 Zur Ausgabe