Skip to main content
Erschienen in: Journal of Materials Science 21/2016

27.07.2016 | Original Paper

Electronic structure and photoabsorption property of pseudocubic perovskites CH3NH3PbX3(X = I, Br) including van der Waals interaction

verfasst von: Chol-Jun Yu, Un-Gi Jong, Mun-Hyok Ri, Gum-Chol Ri, Yong-Hyon Pae

Erschienen in: Journal of Materials Science | Ausgabe 21/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using density functional theory with the inclusion of van der Waals (vdW) interaction, we have investigated electronic energy bands, density of states, effective masses of charge carriers, and photoabsorption coefficients of pseudocubic CH3NH3PbX3 (X = I, Br). Our results confirm the direct band gap of 1.49 (1.92) eV for X = I (Br) in the pseudocubic Pm phase with lattice constant of 6.324 (5.966) Å, being agreed well with experiment and indicating the necessity of vdW correction. The calculated photoabsorption coefficients for X = I (Br) have the onset at red (orange) color and the first peak around violet (ultraviolet) color in overall agreement with the experiment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li C, Soh KCK, Wu P (2004) Formability of ABO3 perovskites. J Alloys Compd 372:40–48CrossRef Li C, Soh KCK, Wu P (2004) Formability of ABO3 perovskites. J Alloys Compd 372:40–48CrossRef
2.
Zurück zum Zitat Yu C-J, Emmerich H (2007) An efficient virtual crystal approximation that can be used to treat heterovalent atoms, applied to (1-x)BiScO3-xPbTiO3. J Phys 19:306203 Yu C-J, Emmerich H (2007) An efficient virtual crystal approximation that can be used to treat heterovalent atoms, applied to (1-x)BiScO3-xPbTiO3. J Phys 19:306203
3.
Zurück zum Zitat Kojima A, Teshima K, Shirai Y, Miyasaka TJ (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051CrossRef Kojima A, Teshima K, Shirai Y, Miyasaka TJ (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051CrossRef
4.
Zurück zum Zitat Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4:3623–3630CrossRef Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4:3623–3630CrossRef
5.
Zurück zum Zitat Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Peng G, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319CrossRef Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Peng G, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319CrossRef
6.
Zurück zum Zitat Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398CrossRef Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398CrossRef
7.
Zurück zum Zitat Zhou H, Chen Q, Li G, Luo S, Song T, Duan H, Hong Z, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345:542–546CrossRef Zhou H, Chen Q, Li G, Luo S, Song T, Duan H, Hong Z, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345:542–546CrossRef
8.
Zurück zum Zitat Lindblad R, Bi D, Park B-W, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson EMJ, Rensmo H (2014) Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J Phys Chem Lett 5:648–653CrossRef Lindblad R, Bi D, Park B-W, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson EMJ, Rensmo H (2014) Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J Phys Chem Lett 5:648–653CrossRef
9.
Zurück zum Zitat Frost JM, Butler KT, Brivio F, Hendon CH, van Schilfgaarde M, Walsh A (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14:2584–2590CrossRef Frost JM, Butler KT, Brivio F, Hendon CH, van Schilfgaarde M, Walsh A (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14:2584–2590CrossRef
10.
Zurück zum Zitat Mosconi E, Amat A, Nazeeruddin MK, Grätzel M, Angelis FD (2013) First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J Phys Chem C 117:13902–13913CrossRef Mosconi E, Amat A, Nazeeruddin MK, Grätzel M, Angelis FD (2013) First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J Phys Chem C 117:13902–13913CrossRef
11.
Zurück zum Zitat Even J, Pedesseau L, Jancu JM, Katan C (2013) Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J Phys Chem Lett 4:2999–3005CrossRef Even J, Pedesseau L, Jancu JM, Katan C (2013) Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J Phys Chem Lett 4:2999–3005CrossRef
12.
Zurück zum Zitat Brivio F, Walker AB, Walsh A (2013) Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Matter 1:042111CrossRef Brivio F, Walker AB, Walsh A (2013) Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Matter 1:042111CrossRef
13.
Zurück zum Zitat Chung I, Lee B, He J, Chang RP, Kanatzidis MG (2012) Interface engineering of highly efficient perovskite solar cells. Nature 485:486–489CrossRef Chung I, Lee B, He J, Chang RP, Kanatzidis MG (2012) Interface engineering of highly efficient perovskite solar cells. Nature 485:486–489CrossRef
14.
Zurück zum Zitat Jianga LQ, Guob JK, Liua HB, Zhua M, Zhoua X, Wuc P, Li CH (2006) Prediction of lattice constant in cubic perovskites. J Phys Chem Solids 67:1531–1536CrossRef Jianga LQ, Guob JK, Liua HB, Zhua M, Zhoua X, Wuc P, Li CH (2006) Prediction of lattice constant in cubic perovskites. J Phys Chem Solids 67:1531–1536CrossRef
15.
Zurück zum Zitat Poglitsch A, Weber D (1987) Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J Chem Phys 87:6373–6378CrossRef Poglitsch A, Weber D (1987) Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J Chem Phys 87:6373–6378CrossRef
16.
Zurück zum Zitat Baikie T, Fang Y, Kadro JM, Schreyer M, Wei F, Mhaisalkar SG, Grätzel M, White TJ (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1:5628–5641CrossRef Baikie T, Fang Y, Kadro JM, Schreyer M, Wei F, Mhaisalkar SG, Grätzel M, White TJ (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 1:5628–5641CrossRef
17.
Zurück zum Zitat Mashiyama H, Kawamura Y, Kasano H, Asahi T, Noda Y, Kimura H (2007) Disordered configuration of methylammonium of CH3NH3PbBr 3 determined by single crystal neutron diffractometry. Ferroelectrics 348:182–186CrossRef Mashiyama H, Kawamura Y, Kasano H, Asahi T, Noda Y, Kimura H (2007) Disordered configuration of methylammonium of CH3NH3PbBr 3 determined by single crystal neutron diffractometry. Ferroelectrics 348:182–186CrossRef
18.
Zurück zum Zitat Onoda-Yamamuro N, Matsuo T, Suga H (1990) Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J Phys Chem Solids 51:1383–1395CrossRef Onoda-Yamamuro N, Matsuo T, Suga H (1990) Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J Phys Chem Solids 51:1383–1395CrossRef
19.
Zurück zum Zitat Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Coccioni M, Dabo I et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J phys 21(39):395502 Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Coccioni M, Dabo I et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J phys 21(39):395502
21.
Zurück zum Zitat Yu C-J, Ri G-C, Jong U-G, Choe Y-G, Cha S-J (2014) Refined phase coexistence line between graphite and diamond from density-functional theory and van der Waals correction. Phys B 434:185–193CrossRef Yu C-J, Ri G-C, Jong U-G, Choe Y-G, Cha S-J (2014) Refined phase coexistence line between graphite and diamond from density-functional theory and van der Waals correction. Phys B 434:185–193CrossRef
22.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRef
23.
Zurück zum Zitat Roman-Perez G, Soler JM (2009) Efficient Implementation of a van der Waals Density Functional: application to double-wall carbon nanotubes. Phys Rev Lett 103:096102CrossRef Roman-Perez G, Soler JM (2009) Efficient Implementation of a van der Waals Density Functional: application to double-wall carbon nanotubes. Phys Rev Lett 103:096102CrossRef
24.
Zurück zum Zitat Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406CrossRef Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406CrossRef
25.
Zurück zum Zitat Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRef Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRef
26.
Zurück zum Zitat Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769CrossRef Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769CrossRef
27.
Zurück zum Zitat Liu C, Qiu Z, Meng W, Chen J, Qi J, Dong C, Wangn M (2015) Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr 3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter. Nano Energy 12:59–68CrossRef Liu C, Qiu Z, Meng W, Chen J, Qi J, Dong C, Wangn M (2015) Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr 3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter. Nano Energy 12:59–68CrossRef
28.
Zurück zum Zitat Motta C, El-Mellouhi F, Kais S, Tabet N, Alharbi F, Sanvito S (2015) Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat Commun 6:7026CrossRef Motta C, El-Mellouhi F, Kais S, Tabet N, Alharbi F, Sanvito S (2015) Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat Commun 6:7026CrossRef
29.
Zurück zum Zitat Zhang GX, Tkatchenko A, Paier J, Appel H, Scheffler M (2011) van der Waals interactions in ionic and semiconductor solids. Phys Rev Lett 107:245501CrossRef Zhang GX, Tkatchenko A, Paier J, Appel H, Scheffler M (2011) van der Waals interactions in ionic and semiconductor solids. Phys Rev Lett 107:245501CrossRef
30.
Zurück zum Zitat Tkatchenko A, DiStasio RA Jr, Car R, Scheffler M (2012) Accurate and efficient method for many-body van der Waals interactions. Phys Rev Lett 108:236402CrossRef Tkatchenko A, DiStasio RA Jr, Car R, Scheffler M (2012) Accurate and efficient method for many-body van der Waals interactions. Phys Rev Lett 108:236402CrossRef
31.
Zurück zum Zitat Wolf SD, Holovsky J, Moon SJ, Löper P, Niesen B, Ledinsky M, Haug FJ, Yum J-H, Ballif C (2014) Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett 5:1035–1039CrossRef Wolf SD, Holovsky J, Moon SJ, Löper P, Niesen B, Ledinsky M, Haug FJ, Yum J-H, Ballif C (2014) Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett 5:1035–1039CrossRef
32.
Zurück zum Zitat Assmann E, Blaha P, Laskowski R, Held K, Okamoto S, Sangiovanni G (2013) Oxide heterostructures for efficient solar cells. Phys Rev Lett 110:078701CrossRef Assmann E, Blaha P, Laskowski R, Held K, Okamoto S, Sangiovanni G (2013) Oxide heterostructures for efficient solar cells. Phys Rev Lett 110:078701CrossRef
Metadaten
Titel
Electronic structure and photoabsorption property of pseudocubic perovskites CH3NH3PbX3(X = I, Br) including van der Waals interaction
verfasst von
Chol-Jun Yu
Un-Gi Jong
Mun-Hyok Ri
Gum-Chol Ri
Yong-Hyon Pae
Publikationsdatum
27.07.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 21/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0217-9

Weitere Artikel der Ausgabe 21/2016

Journal of Materials Science 21/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.