Skip to main content
Erschienen in: Colloid and Polymer Science 5/2019

07.03.2019 | Original Contribution

Electrophoretic mobility of a charged spherical colloidal particle in an uncharged or charged polymer gel medium

verfasst von: Hiroyuki Ohshima

Erschienen in: Colloid and Polymer Science | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A theory is developed of the electrophoretic mobility of a charged spherical colloidal particle in a gel medium due to the long-range hydrodynamic particle-gel interaction by using the Brinkman-Debye-Bueche model and the general mobility expression is derived. On the basis of the obtained general mobility expression, a simple analytic mobility expression for particles with low zeta potential is derived, which is found to be in excellent agreement with the exact mobility equations expressed in terms of exponential integrals derived by Allison et al. for an uncharged gel (J Colloid Interface Sci 313: 328, 2007) and by Li et al. for a charged gel (J Colloid Interface Sci 423: 129, 2014). The relative error is less than 1.6%. An approximate mobility expression for a particle with arbitrary zeta potential in an uncharged gel medium applicable for large κa > 30, where a is the particle radius and κ is the Debye-Hückel parameter, is also derived.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ogston AG, Preston BN, Wells JD (1973) On the transport of compact particles through solutions of chain-polymers. Proc R Soc Lond A 333:297–316CrossRef Ogston AG, Preston BN, Wells JD (1973) On the transport of compact particles through solutions of chain-polymers. Proc R Soc Lond A 333:297–316CrossRef
2.
3.
Zurück zum Zitat Stigter D (2000) Influence of agarose gel on electrophoretic stretch, on trapping, and on relaxation of DNA. Macromolecules 33:8878–8889CrossRef Stigter D (2000) Influence of agarose gel on electrophoretic stretch, on trapping, and on relaxation of DNA. Macromolecules 33:8878–8889CrossRef
4.
Zurück zum Zitat Hill RJ (2006) Electric-field-induced force on a charged spherical colloid embedded in an electrolyte-saturated Brinkman medium. Phys Fluids 18:043103CrossRef Hill RJ (2006) Electric-field-induced force on a charged spherical colloid embedded in an electrolyte-saturated Brinkman medium. Phys Fluids 18:043103CrossRef
5.
Zurück zum Zitat Allison SA, Xin Y, Pei H (2007) Electrophoresis of spheres with uniform zeta potential in a gel modeled as an effective medium. J Colloid Interface Sci 313:328–337CrossRefPubMed Allison SA, Xin Y, Pei H (2007) Electrophoresis of spheres with uniform zeta potential in a gel modeled as an effective medium. J Colloid Interface Sci 313:328–337CrossRefPubMed
6.
Zurück zum Zitat Hanauer M, Pierrat S, Zins I, Lotz A, Sönnichsen C (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Let 7:2881–2885CrossRef Hanauer M, Pierrat S, Zins I, Lotz A, Sönnichsen C (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Let 7:2881–2885CrossRef
7.
Zurück zum Zitat Allison SA, Pei H, Xin Y (2007) Review modeling the free solution and gel electrophoresis of biopolymers: the bead array-effective medium model. Biopolymers 87:102–114CrossRefPubMed Allison SA, Pei H, Xin Y (2007) Review modeling the free solution and gel electrophoresis of biopolymers: the bead array-effective medium model. Biopolymers 87:102–114CrossRefPubMed
8.
Zurück zum Zitat Hill RJ, Ostoja-Starzewski M (2008) Electric-field-induced displacement of a charged spherical colloid embedded in an elastic Brinkman medium. Phys Rev E 77:011404CrossRef Hill RJ, Ostoja-Starzewski M (2008) Electric-field-induced displacement of a charged spherical colloid embedded in an elastic Brinkman medium. Phys Rev E 77:011404CrossRef
9.
Zurück zum Zitat Doane TL, Cheng Y, Babar A, Hill RJ, Burda C (2010) Electrophoretic mobilities of PEGylated gold NPs. J Am Chem Soc 132:15624–15631CrossRefPubMed Doane TL, Cheng Y, Babar A, Hill RJ, Burda C (2010) Electrophoretic mobilities of PEGylated gold NPs. J Am Chem Soc 132:15624–15631CrossRefPubMed
10.
Zurück zum Zitat Mohammadi M, Hill RJ (2010) Steady electrical and micro-rheological response functions for uncharged colloidal inclusions in polyelectrolyte hydrogels. Proc R Soc A 466:213–235CrossRef Mohammadi M, Hill RJ (2010) Steady electrical and micro-rheological response functions for uncharged colloidal inclusions in polyelectrolyte hydrogels. Proc R Soc A 466:213–235CrossRef
11.
Zurück zum Zitat Tsai P, Lee E (2011) Gel electrophoresis in suspensions of charged spherical particles. Soft Matter 7:5789–5798CrossRef Tsai P, Lee E (2011) Gel electrophoresis in suspensions of charged spherical particles. Soft Matter 7:5789–5798CrossRef
12.
Zurück zum Zitat Tsai P, Huang CH, Lee E (2011) Electrophoresis of a charged colloidal particle in porous media: boundary effect of a solid plane. Langmuir 27:13481–13488CrossRefPubMed Tsai P, Huang CH, Lee E (2011) Electrophoresis of a charged colloidal particle in porous media: boundary effect of a solid plane. Langmuir 27:13481–13488CrossRefPubMed
13.
Zurück zum Zitat Hsu JP, Huang CH, Tseng S (2012) Gel electrophoresis: importance of concentration-dependent permittivity and double-layer polarization. Chem Eng Sci 84:574–579CrossRef Hsu JP, Huang CH, Tseng S (2012) Gel electrophoresis: importance of concentration-dependent permittivity and double-layer polarization. Chem Eng Sci 84:574–579CrossRef
14.
Zurück zum Zitat Hsu JP, Huang CH, Tseng S (2013) Gel electrophoresis of a charge-regulated, bi-functional particle. Electrophoresis 34:785–791CrossRefPubMed Hsu JP, Huang CH, Tseng S (2013) Gel electrophoresis of a charge-regulated, bi-functional particle. Electrophoresis 34:785–791CrossRefPubMed
15.
Zurück zum Zitat Hill RJ, Li F (2013) Hydrodynamic drag coefficient for soft core-shell nanoparticles in hydrogels. Chem Eng Sci 89:1–9CrossRef Hill RJ, Li F (2013) Hydrodynamic drag coefficient for soft core-shell nanoparticles in hydrogels. Chem Eng Sci 89:1–9CrossRef
16.
Zurück zum Zitat Li F, Hill RJ (2013) Nanoparticle gel electrophoresis: bare charged spheres in polyelectrolyte hydrogels. J Colloid Interface Sci 394:1–12CrossRefPubMed Li F, Hill RJ (2013) Nanoparticle gel electrophoresis: bare charged spheres in polyelectrolyte hydrogels. J Colloid Interface Sci 394:1–12CrossRefPubMed
17.
Zurück zum Zitat Li F, Allison SA, Hill RJ (2014) Nanoparticle gel electrophoresis: Soft spheres in polyelectrolyte hydrogels under the Debye-Hückel approximation. J Colloid Interface Sci 423:129–142CrossRefPubMed Li F, Allison SA, Hill RJ (2014) Nanoparticle gel electrophoresis: Soft spheres in polyelectrolyte hydrogels under the Debye-Hückel approximation. J Colloid Interface Sci 423:129–142CrossRefPubMed
18.
Zurück zum Zitat Allison SA, Li F, Hill RJ (2014) The electrophoretic mobility of a weakly charged “soft”sphere in a charged hydrogel: application of the Lorentz reciprocal theorem. J Phys Chem B 118:8827–8838CrossRefPubMed Allison SA, Li F, Hill RJ (2014) The electrophoretic mobility of a weakly charged “soft”sphere in a charged hydrogel: application of the Lorentz reciprocal theorem. J Phys Chem B 118:8827–8838CrossRefPubMed
19.
Zurück zum Zitat Bhattacharyya S, De A, Gopmandal PP (2014) Electrophoresis of a colloidal particle embedded in electrolyte saturated porous media. Chem Eng Sci 118:184–191CrossRef Bhattacharyya S, De A, Gopmandal PP (2014) Electrophoresis of a colloidal particle embedded in electrolyte saturated porous media. Chem Eng Sci 118:184–191CrossRef
20.
Zurück zum Zitat Hill RJ (2015) Hydrogel charge regulation and electrolyte ion-concentration perturbations in nanoparticle gel electrophoresis. Proc R Soc A 471:20150523CrossRef Hill RJ (2015) Hydrogel charge regulation and electrolyte ion-concentration perturbations in nanoparticle gel electrophoresis. Proc R Soc A 471:20150523CrossRef
21.
Zurück zum Zitat Allison SA, Li F, Le M (2016) Electrophoretic Mobility of a Dilute, Highly Charged “Soft” Spherical Particle in a Charged Hydrogel. J Phys Chem B 120:8071–8079CrossRefPubMed Allison SA, Li F, Le M (2016) Electrophoretic Mobility of a Dilute, Highly Charged “Soft” Spherical Particle in a Charged Hydrogel. J Phys Chem B 120:8071–8079CrossRefPubMed
22.
Zurück zum Zitat Hill RJ (2016) Electrokinetics of nanoparticle gel-electrophoresis. Soft Matter 12:8030–8048CrossRefPubMed Hill RJ (2016) Electrokinetics of nanoparticle gel-electrophoresis. Soft Matter 12:8030–8048CrossRefPubMed
23.
Zurück zum Zitat Bhattacharyya S, De S (2016) Gel electrophoresis and size selectivity of charged colloidal particles in a charged hydrogel medium. Chem Eng Sci 141:304–314CrossRef Bhattacharyya S, De S (2016) Gel electrophoresis and size selectivity of charged colloidal particles in a charged hydrogel medium. Chem Eng Sci 141:304–314CrossRef
24.
Zurück zum Zitat Bhattacharyya S, De S (2016) Nonlinear effects on electrophoresis of a charged dielectric nanoparticle in a charged hydrogel medium. Phys Fluids 28:092006CrossRef Bhattacharyya S, De S (2016) Nonlinear effects on electrophoresis of a charged dielectric nanoparticle in a charged hydrogel medium. Phys Fluids 28:092006CrossRef
25.
Zurück zum Zitat Majee PS, Bhattacharyya S, Gopmandal PP, Ohshima H (2018) On gel electrophoresis of dielectric charged particles with hydrophobic surface: a combined theoretical and numerical study. Electrophoresis 39:794–806CrossRefPubMed Majee PS, Bhattacharyya S, Gopmandal PP, Ohshima H (2018) On gel electrophoresis of dielectric charged particles with hydrophobic surface: a combined theoretical and numerical study. Electrophoresis 39:794–806CrossRefPubMed
26.
Zurück zum Zitat von Smoluchowski M (1921) Elektrische endosmose und strömungsströme. In: Greatz E (ed) Handbuch der Elektrizität und des Magnetismus, Band II Stationäre ströme. Barth, Leipzig, pp 366–428 von Smoluchowski M (1921) Elektrische endosmose und strömungsströme. In: Greatz E (ed) Handbuch der Elektrizität und des Magnetismus, Band II Stationäre ströme. Barth, Leipzig, pp 366–428
27.
Zurück zum Zitat Hückel E (1924) Die Kataphorese der Kugel. Phys Z 25:204–210 Hückel E (1924) Die Kataphorese der Kugel. Phys Z 25:204–210
28.
Zurück zum Zitat Henry DC (1931) The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc Roy Soc London Ser A 133:106–129CrossRef Henry DC (1931) The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc Roy Soc London Ser A 133:106–129CrossRef
29.
Zurück zum Zitat Overbeek JTG (1943) Theorie der Elektrophorese. Kolloid-Beihefte 54:287–364 Overbeek JTG (1943) Theorie der Elektrophorese. Kolloid-Beihefte 54:287–364
30.
Zurück zum Zitat Booth F (1950) The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proc Roy Soc London Ser A 203:514–533CrossRef Booth F (1950) The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proc Roy Soc London Ser A 203:514–533CrossRef
31.
Zurück zum Zitat Wiersema PH, Loeb AL, Overbeek JTG (1966) Calculation of the electrophoretic mobility of a spherical colloid particle. J Colloid Interface Sci 22:78–99CrossRef Wiersema PH, Loeb AL, Overbeek JTG (1966) Calculation of the electrophoretic mobility of a spherical colloid particle. J Colloid Interface Sci 22:78–99CrossRef
32.
Zurück zum Zitat Dukhin SS, Semenikhin NM (1970) Theory of double layer polarization and its influence on the electrokinetic and electrooptical phenomena and the dielectric permeability of disperse systems. Calculation of the electrophoretic and diffusiophoretic mobility of solid spherical particles. Kolloid Zh 32:360–368 Dukhin SS, Semenikhin NM (1970) Theory of double layer polarization and its influence on the electrokinetic and electrooptical phenomena and the dielectric permeability of disperse systems. Calculation of the electrophoretic and diffusiophoretic mobility of solid spherical particles. Kolloid Zh 32:360–368
33.
Zurück zum Zitat Dukhin SS, Derjaguin BV (1974) Nonequilibrium double layer and electrokinetic phenomena. In: Matievic E (ed) Surface and colloid science, vol 2. John Wiley & Sons, Hoboken, pp 273–336 Dukhin SS, Derjaguin BV (1974) Nonequilibrium double layer and electrokinetic phenomena. In: Matievic E (ed) Surface and colloid science, vol 2. John Wiley & Sons, Hoboken, pp 273–336
34.
Zurück zum Zitat O'Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans II 74:1607–1626CrossRef O'Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans II 74:1607–1626CrossRef
35.
Zurück zum Zitat Hunter RJ (1981) Zeta Potential in Colloid Science. Academic Press, New York Hunter RJ (1981) Zeta Potential in Colloid Science. Academic Press, New York
36.
Zurück zum Zitat Ohshima H, Healy TW, White LR (1983) Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J Chem Soc Faraday Trans II 79:1613–1628CrossRef Ohshima H, Healy TW, White LR (1983) Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J Chem Soc Faraday Trans II 79:1613–1628CrossRef
37.
Zurück zum Zitat Van de Ven TGM (1989) Colloid hydrodynamics. Academic Press, New York Van de Ven TGM (1989) Colloid hydrodynamics. Academic Press, New York
38.
Zurück zum Zitat Hunter RJ (1989) Foundations of colloid science, Vol 2. Oxford University Press, London Hunter RJ (1989) Foundations of colloid science, Vol 2. Oxford University Press, London
39.
Zurück zum Zitat Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloid Interf Sci 44:1–134CrossRef Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloid Interf Sci 44:1–134CrossRef
40.
Zurück zum Zitat Ohshima H (1994) A simple expression for Henry's function for the retardation effect in electrophoresis of spherical colloidal particles. J Colloid Interface Sci 168:269–271CrossRef Ohshima H (1994) A simple expression for Henry's function for the retardation effect in electrophoresis of spherical colloidal particles. J Colloid Interface Sci 168:269–271CrossRef
41.
Zurück zum Zitat Ohshima H (1995) Electrophoresis of soft particles. Adv Colloid Interf Sci 62:189–235CrossRef Ohshima H (1995) Electrophoresis of soft particles. Adv Colloid Interf Sci 62:189–235CrossRef
42.
Zurück zum Zitat Lyklema J (1995) Fundamentals of Interface and colloid science, solid-liquid interfaces, Vol 2. Academic Press, New York Lyklema J (1995) Fundamentals of Interface and colloid science, solid-liquid interfaces, Vol 2. Academic Press, New York
43.
Zurück zum Zitat Delgado AV (ed) (2000) Electrokinetics and electrophoresis. Dekker, New York Delgado AV (ed) (2000) Electrokinetics and electrophoresis. Dekker, New York
44.
Zurück zum Zitat Ohshima H (2001) Approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle. J Colloid Interface Sci 239:587–590CrossRefPubMed Ohshima H (2001) Approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle. J Colloid Interface Sci 239:587–590CrossRefPubMed
45.
Zurück zum Zitat Dukhin AS, Goetz PJ (2002) Ultrasound for characterizing colloids: particle sizing, zeta potential, rheology. Elsevier, Amsterdam Dukhin AS, Goetz PJ (2002) Ultrasound for characterizing colloids: particle sizing, zeta potential, rheology. Elsevier, Amsterdam
46.
Zurück zum Zitat Spasic A, Hsu J-P (eds) (2005) Finely dispersed particles. Micro-. Nano-, atto-engineering. CRC Press, Boca Raton Spasic A, Hsu J-P (eds) (2005) Finely dispersed particles. Micro-. Nano-, atto-engineering. CRC Press, Boca Raton
47.
Zurück zum Zitat Ohshima H (2005) Approximate expression for the electrophoretic mobility of a spherical colloidal particle in a solution of general electrolytes. Colloids Surf A Physicochem Eng Asp 267:50–55CrossRef Ohshima H (2005) Approximate expression for the electrophoretic mobility of a spherical colloidal particle in a solution of general electrolytes. Colloids Surf A Physicochem Eng Asp 267:50–55CrossRef
48.
Zurück zum Zitat Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. John Wiley & Sons, HobokenCrossRef Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. John Wiley & Sons, HobokenCrossRef
49.
Zurück zum Zitat Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, Amsterdam Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, Amsterdam
50.
Zurück zum Zitat Ohshima H (2007) Electrokinetics of soft particles. Colloid Polym Sci 285:1411–1421CrossRef Ohshima H (2007) Electrokinetics of soft particles. Colloid Polym Sci 285:1411–1421CrossRef
51.
Zurück zum Zitat Ohshima H (2010) Biophysical chemistry of biointerfaces. John Wiley & Sons, HobokenCrossRef Ohshima H (2010) Biophysical chemistry of biointerfaces. John Wiley & Sons, HobokenCrossRef
52.
Zurück zum Zitat Ohshima H (ed) (2012) Electrical phenomena at interfaces and biointerfaces: fundamentals and applications in Nano-, bio-, and environmental sciences. John Wiley & Sons, Hoboken Ohshima H (ed) (2012) Electrical phenomena at interfaces and biointerfaces: fundamentals and applications in Nano-, bio-, and environmental sciences. John Wiley & Sons, Hoboken
53.
Zurück zum Zitat Brinkman HC (1947) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res 1:27–34CrossRef Brinkman HC (1947) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res 1:27–34CrossRef
54.
Zurück zum Zitat Debye P, Bueche AM (1948) Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J Chem Phys 16:573–579CrossRef Debye P, Bueche AM (1948) Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J Chem Phys 16:573–579CrossRef
55.
Zurück zum Zitat Reščič J, Kovačević D, Tomšič M, Jamnik A, Ahualli S, Bohinc K (2014) Experimental and theoretical study of the silica particle interactions in the presence of multivalent rod-like ions. Langmuir 30:9717–9725CrossRefPubMed Reščič J, Kovačević D, Tomšič M, Jamnik A, Ahualli S, Bohinc K (2014) Experimental and theoretical study of the silica particle interactions in the presence of multivalent rod-like ions. Langmuir 30:9717–9725CrossRefPubMed
Metadaten
Titel
Electrophoretic mobility of a charged spherical colloidal particle in an uncharged or charged polymer gel medium
verfasst von
Hiroyuki Ohshima
Publikationsdatum
07.03.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 5/2019
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-019-04485-7

Weitere Artikel der Ausgabe 5/2019

Colloid and Polymer Science 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.