Skip to main content
Erschienen in:

01.05.2019 | ORIGINAL PAPER

Electrospun cellulose Nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering

verfasst von: Turdimuhammad Abdullah, Usman Saeed, Adnan Memic, Kalamegam Gauthaman, Mohammad Asif Hussain, Hamad Al-Turaif

Erschienen in: Journal of Polymer Research | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Today, tissue engineered scaffolds made by electrospinning are becoming a central focus of vascular prostheses research due to their ability to assist native tissue recovery. Compared to a single material, multifunctional composite scaffold could provide more suitable microenvironment for the tissue regeneration. In this study, electrospun composite scaffolds are developed by reinforcing a matrix of poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) by cellulose nano-fibrils (CNFs). Initially, PLA/PBS fibrous scaffolds with different ratio were prepared. The best properties and bioactivity of the scaffolds were obtained at equal ratio of PLA and PBS. Overall performance of electrospun scaffolds improved greatly by introduction of CNF into the PLA/PBS scaffolds. The developed composite scaffolds were found to meet some of the essential requirements for vascular tissue regeneration. They showed a uniform fibrous structure with desirable size dimension, cell-friendly surface characteristics, sustainable biodegradation behaviour and sustainable mechanical property compared to native tissue. In addition, the CNF composite scaffolds supported attachment and proliferation of human fibroblast cells more than PLA, PBS or their blends alone. Overall the developed composite scaffolds demonstrated their potency for vascular tissue engineering application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat World Health Organization (2018) Cardiovascular disease World Health Organization (2018) Cardiovascular disease
2.
Zurück zum Zitat Bouten C, Dankers P, Driessen-Mol A, Pedron S, Brizard A, Baaijens F (2011) Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev 63(4):221–241CrossRef Bouten C, Dankers P, Driessen-Mol A, Pedron S, Brizard A, Baaijens F (2011) Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev 63(4):221–241CrossRef
3.
Zurück zum Zitat Benstoem C, Stoppe C, Liakopoulos OJ, Meybohm P, Clayton TC, Yellon DM, Hausenloy DJ, Goetzenich A (2015) Remote ischaemic preconditioning for coronary artery bypass grafting. The Cochrane Library Benstoem C, Stoppe C, Liakopoulos OJ, Meybohm P, Clayton TC, Yellon DM, Hausenloy DJ, Goetzenich A (2015) Remote ischaemic preconditioning for coronary artery bypass grafting. The Cochrane Library
4.
Zurück zum Zitat Seifu DG, Purnama A, Mequanint K, Mantovani D (2013) Small-diameter vascular tissue engineering. Nat Rev Cardiol 10(7):410–421CrossRef Seifu DG, Purnama A, Mequanint K, Mantovani D (2013) Small-diameter vascular tissue engineering. Nat Rev Cardiol 10(7):410–421CrossRef
5.
Zurück zum Zitat Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, Dehghani F, Khademhosseini A (2014) Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater 10(1):11–25CrossRef Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, Dehghani F, Khademhosseini A (2014) Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater 10(1):11–25CrossRef
6.
Zurück zum Zitat O'brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95CrossRef O'brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95CrossRef
7.
Zurück zum Zitat Ercolani E, Del Gaudio C, Bianco A (2015) Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med 9(8):861–888CrossRef Ercolani E, Del Gaudio C, Bianco A (2015) Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med 9(8):861–888CrossRef
10.
Zurück zum Zitat Gigli M, Fabbri M, Lotti N, Gamberini R, Rimini B, Munari A (2016) Poly (butylene succinate)-based polyesters for biomedical applications: a review. Eur Polym J 75:431–460CrossRef Gigli M, Fabbri M, Lotti N, Gamberini R, Rimini B, Munari A (2016) Poly (butylene succinate)-based polyesters for biomedical applications: a review. Eur Polym J 75:431–460CrossRef
12.
Zurück zum Zitat Zhao P, Liu W, Wu Q, Ren J (2010) Preparation, mechanical, and thermal properties of biodegradable polyesters/poly (lactic acid) blends. J Nanomater 2010:4 Zhao P, Liu W, Wu Q, Ren J (2010) Preparation, mechanical, and thermal properties of biodegradable polyesters/poly (lactic acid) blends. J Nanomater 2010:4
13.
Zurück zum Zitat Hassan E, Wei Y, Jiao H, Muhuo Y (2013) Dynamic mechanical properties and thermal stability of poly (lactic acid) and poly (butylene succinate) blends composites. Journal of Fiber Bioengineering and Informatics 6(1):85–94CrossRef Hassan E, Wei Y, Jiao H, Muhuo Y (2013) Dynamic mechanical properties and thermal stability of poly (lactic acid) and poly (butylene succinate) blends composites. Journal of Fiber Bioengineering and Informatics 6(1):85–94CrossRef
14.
Zurück zum Zitat Yokohara T, Okamoto K, Yamaguchi M (2010) Effect of the shape of dispersed particles on the thermal and mechanical properties of biomass polymer blends composed of poly (L-lactide) and poly (butylene succinate). J Appl Polym Sci 117(4):2226–2232CrossRef Yokohara T, Okamoto K, Yamaguchi M (2010) Effect of the shape of dispersed particles on the thermal and mechanical properties of biomass polymer blends composed of poly (L-lactide) and poly (butylene succinate). J Appl Polym Sci 117(4):2226–2232CrossRef
15.
Zurück zum Zitat Bhatia A, Gupta R, Bhattacharya S, Choi H (2007) Compatibility of biodegradable poly (lactic acid)(PLA) and poly (butylene succinate)(PBS) blends for packaging application. Korea-Aust Rheol J 19(3):125–131 Bhatia A, Gupta R, Bhattacharya S, Choi H (2007) Compatibility of biodegradable poly (lactic acid)(PLA) and poly (butylene succinate)(PBS) blends for packaging application. Korea-Aust Rheol J 19(3):125–131
16.
Zurück zum Zitat Kun H, Wei Z, Xuan L, Xiubin Y (2012) Biocompatibility of a novel poly (butyl succinate) and polylactic acid blend. ASAIO J 58(3):262–267CrossRef Kun H, Wei Z, Xuan L, Xiubin Y (2012) Biocompatibility of a novel poly (butyl succinate) and polylactic acid blend. ASAIO J 58(3):262–267CrossRef
17.
Zurück zum Zitat Benítez A, Walther A (2017) Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J Mater Chem A 5(31):16003–16024CrossRef Benítez A, Walther A (2017) Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J Mater Chem A 5(31):16003–16024CrossRef
19.
Zurück zum Zitat Clemons C (2016) Nanocellulose in spun continuous fibers: a review and future outlook. J Renew Mater 4(5):327–339CrossRef Clemons C (2016) Nanocellulose in spun continuous fibers: a review and future outlook. J Renew Mater 4(5):327–339CrossRef
20.
Zurück zum Zitat Lundahl MJ, Klar V, Ajdary R, Norberg N, Ago M, Cunha AG, Rojas OJ (2018) Absorbent filaments from cellulose Nanofibril hydrogels through continuous coaxial wet spinning. ACS Appl Mater Interfaces 10(32):27287–27296CrossRef Lundahl MJ, Klar V, Ajdary R, Norberg N, Ago M, Cunha AG, Rojas OJ (2018) Absorbent filaments from cellulose Nanofibril hydrogels through continuous coaxial wet spinning. ACS Appl Mater Interfaces 10(32):27287–27296CrossRef
21.
Zurück zum Zitat Abudula T, Saeed U, Salah N, Memic A, Al-Turaif H (2018) Study of electrospinning parameters and collection methods on size distribution and orientation of PLA/PBS hybrid Fiber using digital image processing. J Nanosci Nanotechnol 18(12):8240–8251CrossRef Abudula T, Saeed U, Salah N, Memic A, Al-Turaif H (2018) Study of electrospinning parameters and collection methods on size distribution and orientation of PLA/PBS hybrid Fiber using digital image processing. J Nanosci Nanotechnol 18(12):8240–8251CrossRef
22.
Zurück zum Zitat Henriques C, Vidinha R, Botequim D, Borges J, Silva J (2009) A systematic study of solution and processing parameters on nanofiber morphology using a new electrospinning apparatus. J Nanosci Nanotechnol 9(6):3535–3545CrossRef Henriques C, Vidinha R, Botequim D, Borges J, Silva J (2009) A systematic study of solution and processing parameters on nanofiber morphology using a new electrospinning apparatus. J Nanosci Nanotechnol 9(6):3535–3545CrossRef
24.
Zurück zum Zitat Wang C, Cheng Y-W, Hsu C-H, Chien H-S, Tsou S-Y (2011) How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter?—a brief discussion of solution electrospinning process. J Polym Res 18(1):111–123. https://doi.org/10.1007/s10965-010-9397-1 CrossRef Wang C, Cheng Y-W, Hsu C-H, Chien H-S, Tsou S-Y (2011) How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter?—a brief discussion of solution electrospinning process. J Polym Res 18(1):111–123. https://​doi.​org/​10.​1007/​s10965-010-9397-1 CrossRef
25.
Zurück zum Zitat de Sousa AMF Technical-scientific papers thermal, rheological and morphological properties of poly (lactic acid)(PLA) and talc composites Talita Ferreira Cipriano. Ana Lúcia Nazareth da Silva Instituto de Macromoléculas Professora Eloisa Mano–IMA, Universidade Federal de Sousa AMF Technical-scientific papers thermal, rheological and morphological properties of poly (lactic acid)(PLA) and talc composites Talita Ferreira Cipriano. Ana Lúcia Nazareth da Silva Instituto de Macromoléculas Professora Eloisa Mano–IMA, Universidade Federal
26.
Zurück zum Zitat Stoyanova N, Paneva D, Mincheva R, Toncheva A, Manolova N, Dubois P, Rashkov I (2014) Poly (l-lactide) and poly (butylene succinate) immiscible blends: from electrospinning to biologically active materials. Mater Sci Eng C 41:119–126CrossRef Stoyanova N, Paneva D, Mincheva R, Toncheva A, Manolova N, Dubois P, Rashkov I (2014) Poly (l-lactide) and poly (butylene succinate) immiscible blends: from electrospinning to biologically active materials. Mater Sci Eng C 41:119–126CrossRef
27.
Zurück zum Zitat Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific
28.
Zurück zum Zitat Liu W, Dong Y, Liu D, Bai Y, Lu X (2018) Polylactic acid (PLA)/cellulose Nanowhiskers (CNWs) composite nanofibers: microstructural and properties analysis. J Compos Sci 2(1):4CrossRef Liu W, Dong Y, Liu D, Bai Y, Lu X (2018) Polylactic acid (PLA)/cellulose Nanowhiskers (CNWs) composite nanofibers: microstructural and properties analysis. J Compos Sci 2(1):4CrossRef
34.
Zurück zum Zitat Pan Y, Zhou X, Wei Y, Zhang Q, Wang T, Zhu M, Li W, Huang R, Liu R, Chen J (2017) Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers. Sci Rep 7(1):3615CrossRef Pan Y, Zhou X, Wei Y, Zhang Q, Wang T, Zhu M, Li W, Huang R, Liu R, Chen J (2017) Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers. Sci Rep 7(1):3615CrossRef
37.
Zurück zum Zitat Bissell MJ, Turley EA, Nikjoo A, Veiseh M (2014) From microenvironment to Nanoenvironment: ultrastructure and function of extracellular matrix. Nanotechnology and regenerative engineering. CRC Press, pp 56–79 Bissell MJ, Turley EA, Nikjoo A, Veiseh M (2014) From microenvironment to Nanoenvironment: ultrastructure and function of extracellular matrix. Nanotechnology and regenerative engineering. CRC Press, pp 56–79
38.
Zurück zum Zitat Jiang X, Yang JP, Wang XH, Zhou JJ, Li L (2009) The degradation and adsorption behaviors of enzyme on poly (butylene succinate) single crystals. Macromol Biosci 9(12):1281–1286CrossRef Jiang X, Yang JP, Wang XH, Zhou JJ, Li L (2009) The degradation and adsorption behaviors of enzyme on poly (butylene succinate) single crystals. Macromol Biosci 9(12):1281–1286CrossRef
39.
Zurück zum Zitat Morihara K, Tsuzuki H (1975) Specificity of proteinase K from Tritirachium album limber for synthetic peptides. Agric Biol Chem 39(7):1489–1492 Morihara K, Tsuzuki H (1975) Specificity of proteinase K from Tritirachium album limber for synthetic peptides. Agric Biol Chem 39(7):1489–1492
40.
Zurück zum Zitat Tonglairoum P, Ngawhirunpat T, Rojanarata T, Opanasopit P (2015) Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing. Pharm Dev Technol 20(8):976–983CrossRef Tonglairoum P, Ngawhirunpat T, Rojanarata T, Opanasopit P (2015) Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing. Pharm Dev Technol 20(8):976–983CrossRef
41.
Zurück zum Zitat Chang H-I, Wang Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds. Regenerative medicine and tissue engineering-cells and biomaterials. InTech Chang H-I, Wang Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds. Regenerative medicine and tissue engineering-cells and biomaterials. InTech
43.
Zurück zum Zitat Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoshinari M (2009) Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater 4(4):045002CrossRef Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoshinari M (2009) Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater 4(4):045002CrossRef
45.
Zurück zum Zitat Tallawi M, Rai R, R-Gleixner M, Roerick O, Weyand M, Roether J, Schubert D, Kozlowska A, Fray ME, Merle B Poly (glycerol sebacate)\P oly (butylene succinate-dilinoleate) blends as candidate materials for cardiac tissue engineering. In: Macromol Symp, 2013. vol 1. Wiley Online Library, pp 57–67 Tallawi M, Rai R, R-Gleixner M, Roerick O, Weyand M, Roether J, Schubert D, Kozlowska A, Fray ME, Merle B Poly (glycerol sebacate)\P oly (butylene succinate-dilinoleate) blends as candidate materials for cardiac tissue engineering. In: Macromol Symp, 2013. vol 1. Wiley Online Library, pp 57–67
47.
Metadaten
Titel
Electrospun cellulose Nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering
verfasst von
Turdimuhammad Abdullah
Usman Saeed
Adnan Memic
Kalamegam Gauthaman
Mohammad Asif Hussain
Hamad Al-Turaif
Publikationsdatum
01.05.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 5/2019
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1772-y

Weitere Artikel der Ausgabe 5/2019

Journal of Polymer Research 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.