Skip to main content
Erschienen in: Journal of Computational Electronics 4/2018

05.09.2018

Electrostatically doped tunnel CNTFET model for low-power VLSI circuit design

verfasst von: Shashi Bala, Mamta Khosla

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With advantages such as low sub-threshold swing, low OFF-state current and the ability to attain a higher ON–OFF ratio, the tunnel CNTFET is one of the most comprehensively investigated devices for low-power application. The problems associated with this device are fabrication issues since conventional doping is not possible in CNTs. Therefore, a doping-less tunnel CNTFET is proposed which is free from problems associated with a conventional tunnel CNTFET. A mathematical model is developed for an electrostatically doped tunnel CNTFET, and to validate the model accuracy and the equation set, the simulation results are compared with NanoTCAD ViDES results. Finally, the developed model is deployed in an inverter design to verify the suitability of the model for circuit applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tanaka, J., Toyabe, T., Ihara, S., Kimura, S., Noda, H., Itoh, K.: Simulation of sub-0.1-μm MOSFET’s with completely suppressed short-channel effect. IEEE Electron Device Lett. 14(8), 396–399 (1993)CrossRef Tanaka, J., Toyabe, T., Ihara, S., Kimura, S., Noda, H., Itoh, K.: Simulation of sub-0.1-μm MOSFET’s with completely suppressed short-channel effect. IEEE Electron Device Lett. 14(8), 396–399 (1993)CrossRef
2.
Zurück zum Zitat Bricout, P.H., Dubois, E.: Short-channel effect immunity and current capability of sub-0.1-micron MOSFET’s using a recessed channel. IEEE Trans. Electron Devices 43(8), 1251–1255 (1996)CrossRef Bricout, P.H., Dubois, E.: Short-channel effect immunity and current capability of sub-0.1-micron MOSFET’s using a recessed channel. IEEE Trans. Electron Devices 43(8), 1251–1255 (1996)CrossRef
3.
Zurück zum Zitat Young, K.K.: Short channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36(2), 399–402 (1989)CrossRef Young, K.K.: Short channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36(2), 399–402 (1989)CrossRef
4.
Zurück zum Zitat Raj, B.: Quantum mechanical potential modeling of FinFET. In: Han, W., Wang, Z.M. (eds.) Towards Quantum FinFET, vol. 17, pp. 81–97. Springer, Cham (2014)CrossRef Raj, B.: Quantum mechanical potential modeling of FinFET. In: Han, W., Wang, Z.M. (eds.) Towards Quantum FinFET, vol. 17, pp. 81–97. Springer, Cham (2014)CrossRef
5.
Zurück zum Zitat Zhang, Q., Shao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)CrossRef Zhang, Q., Shao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)CrossRef
6.
Zurück zum Zitat Appenzeller, J., Lin, Y.M., Knoch, J., Avouris, P.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93(19), 196 805-1–196 805-4 (2004)CrossRef Appenzeller, J., Lin, Y.M., Knoch, J., Avouris, P.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93(19), 196 805-1–196 805-4 (2004)CrossRef
7.
Zurück zum Zitat Schenk, A.: Rigorous theory and simplified model of the band-to-band tunneling in silicon. Solid State Electron. 36(1), 19–34 (1993)CrossRef Schenk, A.: Rigorous theory and simplified model of the band-to-band tunneling in silicon. Solid State Electron. 36(1), 19–34 (1993)CrossRef
8.
Zurück zum Zitat Saurabh, S., Kumar, M.J.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2011)CrossRef Saurabh, S., Kumar, M.J.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2011)CrossRef
9.
Zurück zum Zitat Knoch, J., Appenzeller, J.: Tunneling phenomena in carbon nanotube field-effect transistors. Physica Status Solidi 205(4), 679–694 (2008)CrossRef Knoch, J., Appenzeller, J.: Tunneling phenomena in carbon nanotube field-effect transistors. Physica Status Solidi 205(4), 679–694 (2008)CrossRef
10.
Zurück zum Zitat Appenzeller, J.: Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52(12), 2568–2576 (2005)CrossRef Appenzeller, J.: Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52(12), 2568–2576 (2005)CrossRef
11.
Zurück zum Zitat Pourfath, M., Kosina, H., Selberherr, S.: Tunneling CNTFETs. J. Comput. Electron. 6(1–3), 243–246 (2007)CrossRef Pourfath, M., Kosina, H., Selberherr, S.: Tunneling CNTFETs. J. Comput. Electron. 6(1–3), 243–246 (2007)CrossRef
12.
Zurück zum Zitat Knoch, J., Appenzeller, J.: A novel concept for field-effect transistors the tunneling carbon nanotube FET. In: Proceedings of the 63rd Device Research Conference Digest, vol. 1, pp. 153–156 (2005) Knoch, J., Appenzeller, J.: A novel concept for field-effect transistors the tunneling carbon nanotube FET. In: Proceedings of the 63rd Device Research Conference Digest, vol. 1, pp. 153–156 (2005)
13.
Zurück zum Zitat Kaushik, B.K., Majumder, M.K.: Carbon nanotube: properties and applications. In: Kaushik, B.K. (ed.) Carbon Nanotube Based VLSI Interconnects, pp. 17–37. Springer, New Delhi (2015) Kaushik, B.K., Majumder, M.K.: Carbon nanotube: properties and applications. In: Kaushik, B.K. (ed.) Carbon Nanotube Based VLSI Interconnects, pp. 17–37. Springer, New Delhi (2015)
14.
Zurück zum Zitat Hueting, R.J.E., Rajasekharan, B., Salm, C., Schmitz, J.: The Charge plasma P–N diode. Electron Device Lett. 29(12), 1367–1369 (2008)CrossRef Hueting, R.J.E., Rajasekharan, B., Salm, C., Schmitz, J.: The Charge plasma P–N diode. Electron Device Lett. 29(12), 1367–1369 (2008)CrossRef
15.
Zurück zum Zitat Kumar, M.J., Nadda, K.: Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012)CrossRef Kumar, M.J., Nadda, K.: Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012)CrossRef
16.
Zurück zum Zitat Loan, S.A., Bashir, F., Rafat, M., Alamoud, A.R.M., Abbasi, S.A.: A high performance double gate dopingless metal oxide semiconductor field effect transistor. In: Proceedings off the Ion Implantation Technology, pp. 1–4 (2014) Loan, S.A., Bashir, F., Rafat, M., Alamoud, A.R.M., Abbasi, S.A.: A high performance double gate dopingless metal oxide semiconductor field effect transistor. In: Proceedings off the Ion Implantation Technology, pp. 1–4 (2014)
17.
Zurück zum Zitat Singh, A., Khosla, M., Raj, B.: Analysis of electrostatic doped Schottky barrier carbon nanotube FET for low power applications. J. Mater. Sci. Mater. Electron. 28, 1762–1768 (2017)CrossRef Singh, A., Khosla, M., Raj, B.: Analysis of electrostatic doped Schottky barrier carbon nanotube FET for low power applications. J. Mater. Sci. Mater. Electron. 28, 1762–1768 (2017)CrossRef
18.
Zurück zum Zitat Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: Design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRef Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: Design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRef
19.
Zurück zum Zitat Raad, B.R., Sharma, D., Kondekar, P., Nigam, K., Yadav, D.S.: Drain work function engineered doping-less charge plasma TFET for ambipolar suppression and RF performance improvement: a proposal, design, and investigation. IEEE Trans. Electron Devices 63(10), 3950–3957 (2016)CrossRef Raad, B.R., Sharma, D., Kondekar, P., Nigam, K., Yadav, D.S.: Drain work function engineered doping-less charge plasma TFET for ambipolar suppression and RF performance improvement: a proposal, design, and investigation. IEEE Trans. Electron Devices 63(10), 3950–3957 (2016)CrossRef
20.
Zurück zum Zitat Singh, S., Kondekar, P.N.: A novel dynamically configurable electrostatically doped silicon nanowire impact ionization MOS. Superlattices Microstruct. 88(12), 695–703 (2015)CrossRef Singh, S., Kondekar, P.N.: A novel dynamically configurable electrostatically doped silicon nanowire impact ionization MOS. Superlattices Microstruct. 88(12), 695–703 (2015)CrossRef
21.
Zurück zum Zitat Gupta, G., Rajasekharan, B., Hueting, R.J.: Electrostatic doping in semiconductor devices. IEEE Trans. Electron Devices 64(8), 3044–3055 (2017)CrossRef Gupta, G., Rajasekharan, B., Hueting, R.J.: Electrostatic doping in semiconductor devices. IEEE Trans. Electron Devices 64(8), 3044–3055 (2017)CrossRef
22.
Zurück zum Zitat Singh, A., Khosla, M., Raj, B.: Circuit compatible model for electrostatic doped Schottky barrier CNTFET. J. Electron. Mater. 45(10), 5381–5390 (2016)CrossRef Singh, A., Khosla, M., Raj, B.: Circuit compatible model for electrostatic doped Schottky barrier CNTFET. J. Electron. Mater. 45(10), 5381–5390 (2016)CrossRef
23.
Zurück zum Zitat Zener, C.: A theory of electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. A 145(855), 523–529 (1934)CrossRef Zener, C.: A theory of electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. A 145(855), 523–529 (1934)CrossRef
25.
Zurück zum Zitat Moll, J.L.: Physics of Semiconductors, pp. 249–253. McGraw-Hill, New York (1964)MATH Moll, J.L.: Physics of Semiconductors, pp. 249–253. McGraw-Hill, New York (1964)MATH
26.
Zurück zum Zitat Ilatikhameneh, H., Salazar, R.B., Klimeck, G., Rahman, R., Appenzeller, J.: From Fowler–Nordheim to nonequilibrium Green’s function modeling of tunneling. IEEE Trans. Electron Devices 63(7), 2871–2878 (2016)CrossRef Ilatikhameneh, H., Salazar, R.B., Klimeck, G., Rahman, R., Appenzeller, J.: From Fowler–Nordheim to nonequilibrium Green’s function modeling of tunneling. IEEE Trans. Electron Devices 63(7), 2871–2878 (2016)CrossRef
27.
Zurück zum Zitat Salazar, R.B., Ilatikhameneh, H., Rahman, R., Klimeck, G., Appenzeller, J.: A predictive analytic model for high-performance tunneling field-effect transistors approaching non-equilibrium Green’s function simulations. J. Appl. Phys. 118(16), 164305 (2015)CrossRef Salazar, R.B., Ilatikhameneh, H., Rahman, R., Klimeck, G., Appenzeller, J.: A predictive analytic model for high-performance tunneling field-effect transistors approaching non-equilibrium Green’s function simulations. J. Appl. Phys. 118(16), 164305 (2015)CrossRef
28.
Zurück zum Zitat Wang, P.-F., Hilsenbeck, K., Nirschl, T., Oswald, M., Stepper, C., Weiss, M., Schmitt-Landsiedel, D., Hansch, W.: Complementary tunneling transistor for low power applications. Solid State Electron. 48(12), 2281–2286 (2004)CrossRef Wang, P.-F., Hilsenbeck, K., Nirschl, T., Oswald, M., Stepper, C., Weiss, M., Schmitt-Landsiedel, D., Hansch, W.: Complementary tunneling transistor for low power applications. Solid State Electron. 48(12), 2281–2286 (2004)CrossRef
29.
Zurück zum Zitat Kumar, S., Raj, B.: Compact channel potential analytical modeling of DG-TFET based on Evanescent-mode approach. J. Comput. Electron. 14(3), 820 (2015)CrossRef Kumar, S., Raj, B.: Compact channel potential analytical modeling of DG-TFET based on Evanescent-mode approach. J. Comput. Electron. 14(3), 820 (2015)CrossRef
30.
Zurück zum Zitat Reddick, W., Amaratunga, G.: Silicon surface tunnel transistor. Appl. Phys. Lett. 67(4), 494–496 (1995)CrossRef Reddick, W., Amaratunga, G.: Silicon surface tunnel transistor. Appl. Phys. Lett. 67(4), 494–496 (1995)CrossRef
31.
Zurück zum Zitat Seabaugh and Q. Zhang “Low-voltage tunnel transistors for beyond CMOS logic”,Proc. IEEE, vol. 98, No. 12, pp. 2095–2110, 2010CrossRef Seabaugh and Q. Zhang “Low-voltage tunnel transistors for beyond CMOS logic”,Proc. IEEE, vol. 98, No. 12, pp. 2095–2110, 2010CrossRef
32.
Zurück zum Zitat Knoch, J., Mantl, S., Appenzeller, J.: Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid State Electron. 51(4), 572–578 (2007)CrossRef Knoch, J., Mantl, S., Appenzeller, J.: Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid State Electron. 51(4), 572–578 (2007)CrossRef
34.
Zurück zum Zitat Luisier, M., Klimeck, G.: Simulation of nanowire tunneling transistors: from the Wentzel Kramers Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107(8), 084507 (2010)CrossRef Luisier, M., Klimeck, G.: Simulation of nanowire tunneling transistors: from the Wentzel Kramers Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107(8), 084507 (2010)CrossRef
35.
Zurück zum Zitat Frégonèse, S., Maneux, C., Zimmer, T.: Implementation of tunneling phenomena in a CNTFET compact model. IEEE Trans. Electron Devices 56(10), 2224–2231 (2009)CrossRef Frégonèse, S., Maneux, C., Zimmer, T.: Implementation of tunneling phenomena in a CNTFET compact model. IEEE Trans. Electron Devices 56(10), 2224–2231 (2009)CrossRef
36.
Zurück zum Zitat Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Assessment of ambipolar behavior of a tunnel FET and influence of structural modifications. J Semicond Technol Sci 12(4), 482–491 (2012)CrossRef Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Assessment of ambipolar behavior of a tunnel FET and influence of structural modifications. J Semicond Technol Sci 12(4), 482–491 (2012)CrossRef
37.
Zurück zum Zitat Abebe, H., Cumberbatch, E.: Electrostatic single-walled carbon nanotube field effect transistor MOSIS device modeling. In: WCM (2011) Abebe, H., Cumberbatch, E.: Electrostatic single-walled carbon nanotube field effect transistor MOSIS device modeling. In: WCM (2011)
38.
Zurück zum Zitat Streetman, B.G., Banerjee, S.: Solid State Electronics Devices, vol. 4, 6th edn, pp. 89–92. Prentice Hall, Englewood Cliffs (2000) Streetman, B.G., Banerjee, S.: Solid State Electronics Devices, vol. 4, 6th edn, pp. 89–92. Prentice Hall, Englewood Cliffs (2000)
39.
Zurück zum Zitat Mintmire, J.W., White, C.T.: Universal density of states for carbon nanotubes. Phys. Rev. Lett. 81(12), 2506–2509 (1998)CrossRef Mintmire, J.W., White, C.T.: Universal density of states for carbon nanotubes. Phys. Rev. Lett. 81(12), 2506–2509 (1998)CrossRef
40.
Zurück zum Zitat Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., Dai, H.: High K dielectrics for advanced carbon nanotube transistors and logic. Nat. Mater. 1(4), 241–246 (2002)CrossRef Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., Dai, H.: High K dielectrics for advanced carbon nanotube transistors and logic. Nat. Mater. 1(4), 241–246 (2002)CrossRef
Metadaten
Titel
Electrostatically doped tunnel CNTFET model for low-power VLSI circuit design
verfasst von
Shashi Bala
Mamta Khosla
Publikationsdatum
05.09.2018
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2018
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1240-7

Weitere Artikel der Ausgabe 4/2018

Journal of Computational Electronics 4/2018 Zur Ausgabe

Neuer Inhalt