Skip to main content
main-content

Über dieses Buch

In der modernen Stochastik werden Wahrscheinlichkeiten im Zusammenhang mit Zufallsvariablen gedacht. Damit macht dieses Lehrbuch Ernst, schon die Welt uniform verteilter Zufallsgrößen wird dann farbig. Das Konzept der Zufallsgrößen prägt den Aufbau des Buches. Es enthält neue Beispiele und dringt auf knappem Raum weit in das Rechnen mit Zufallsvariablen vor, ohne Techniken aus der Maß- und Integrationstheorie zu bemühen. Die wichtigsten diskreten und kontinuierlichen Verteilungen werden erklärt, und der Umgang mit Erwartungswert, Varianz und bedingten Verteilungen wird vermittelt. Der Text reicht bis zum Zentralen Grenzwertsatz (samt Beweis) und zu den Anfängen der Markovketten. Je ein Kapitel ist Ideen der Statistik und der Informationstheorie gewidmet. Die Neuauflage ist ergänzt durch einen Beweis des Starken Gesetzes der Großen Zahlen und durch weitere Übungsaufgaben. Das Buch liefert Orientierung und Material für verschiedene Varianten 2- oder 4-stündiger einführender Lehrveranstaltungen.

Inhaltsverzeichnis

Frontmatter

Zufallsvariable mit uniformer Verteilung

Das grundlegende Objekt der modernen Stochastik ist die Zufallsvariable zusammen mit ihrer (Wahrscheinlichkeits-) Verteilung. Die Vorstellung, die sich mit einer Zufallsvariablen verbindet, ist die der zufälligen Wahl eines Elements aus einer Menge. Die Verteilung der Zufallsvariablen gibt dann Auskunft, wie die Chancen für die verschiedenen Elemente stehen. Prototypisch ist der Münzwurf, der eine Zufallswahl zwischen 0 und 1 (Kopf und Zahl) erlaubt, mit einer fairen oder auch gezinkten Münze. Die Stochastik hat also Situationen vor Augen, in denen es mehrere mögliche Ausgänge gibt, von denen dann einer zufällig realisiert wird.
Götz Kersting, Anton Wakolbinger

Zufallsvariable und Verteilungen

In diesem Kapitel behandeln wir Zufallsvariable mit zwei wichtigen Typen von Verteilungen. Bei diskreten Zufallsvariablen sind die Verteilungen durch Gewichte gegeben. Der Fall von Zufallsvariablen mit Dichten ist etwas anspruchsvoller. Die Analogie der beiden Typen wird deutlich, wenn man Dichten anschaulich als infinitesimale Gewichte begreift. Wir werden Erwartungswert und Varianz, grundlegende Kenngrößen der Verteilung einer reellwertigen Zufallsvariablen, einführen und verschiedene wichtige Beispiele betrachten.
Götz Kersting, Anton Wakolbinger

Erwartungswert, Varianz, Unabhängigkeit

Nachdem bisher Beispiele im Vordergrund standen, wollen wir nun erste Schritte in die Theorie gehen. Wir zeigen, wie man mit Erwartungswerten und Varianzen umgeht, behandeln den Begriff der (stochastischen) Unabhängigkeit und leiten zwei besonders wichtige Resultate der Stochastik ab, das Schwache Gesetz der Großen Zahlen und den Zentralen Grenzwertsatz.
Götz Kersting, Anton Wakolbinger

Abhängige Zufallsvariable und bedingte Verteilungen

Um Abhängigkeiten zwischen Zufallsvariablen zu erfassen, betrachten wir nun Situationen, in denen anschaulich gesprochen zwei oder mehrere Zufallsvariable ihre Werte nacheinander annehmen und die Verteilungen der nachfolgenden Zufallsvariablen von den Werten der vorherigen abhängen. Im wichtigen Fall der Markovketten sind die Abhängigkeiten „ohne Gedächtnis“.
Götz Kersting, Anton Wakolbinger

Ideen aus der Statistik

In der Statistik untersucht man Daten, in denen Variabilität steckt. Der Blick ist dabei auf systematische Komponenten gerichtet, die manchmal erst aufgedeckt werden müssen.
Götz Kersting, Anton Wakolbinger

Ideen aus der Informationstheorie

Die Informationstheorie ist der Teil der Stochastik, der sich aus Fragestellungen der Nachrichtenübertragung entwickelt hat. Die Theorie handelt von Zufallsaspekten, von den übermittelten Inhalten wird dabei abgesehen. Es geht weitgehend um Codes, deren Eigenschaften man mithilfe von Begriffen wie Entropie, Redundanz, Information und Kanalkapazität zu erfassen sucht.
Götz Kersting, Anton Wakolbinger

Backmatter

Weitere Informationen

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Blockchain-Effekte im Banking und im Wealth Management

Es steht fest, dass Blockchain-Technologie die Welt verändern wird. Weit weniger klar ist, wie genau dies passiert. Ein englischsprachiges Whitepaper des Fintech-Unternehmens Avaloq untersucht, welche Einsatzszenarien es im Banking und in der Vermögensverwaltung geben könnte – „Blockchain: Plausibility within Banking and Wealth Management“. Einige dieser plausiblen Einsatzszenarien haben sogar das Potenzial für eine massive Disruption. Ein bereits existierendes Beispiel liefert der Initial Coin Offering-Markt: ICO statt IPO.
Jetzt gratis downloaden!

Bildnachweise