Skip to main content
Erschienen in: Quantum Information Processing 10/2020

01.10.2020

Elementary quantum gates between long-distance qubits mediated by a resonator

verfasst von: Ming-Cui Li, Ai-Xi Chen

Erschienen in: Quantum Information Processing | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a scheme to realize Controlled-NOT, Controlled-V, Controlled-\(V^{\dag }\) gate based on the indirect coupling of two qubits which are coupled to a common resonator. Based on the state-of-the-art controllability of longitudinal and transverse coupling between a qubit and a resonator, we let the control qubit couple to the resonator longitudinally and the target qubit couple to the resonator transversely. One can get the fidelity of these gates (as well as the synthesized Toffoli gate) over 99% within effective gate timescales. The proposed gate scheme is possible for the experimental setups where the effective qubit–resonator coupling strength is far bigger than the cavity decay rate and the dephasing rate of the qubits and applicable to quantum circuit synthesizing and long-distance qubit interaction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22(5), 563–591 (1980)ADSMathSciNetCrossRef Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22(5), 563–591 (1980)ADSMathSciNetCrossRef
3.
Zurück zum Zitat Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)ADSMathSciNetMATH Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)ADSMathSciNetMATH
4.
Zurück zum Zitat Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE, pp. 124–134 (1994) Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE, pp. 124–134 (1994)
5.
Zurück zum Zitat Peng, X., Liao, Z., Xu, N., et al.: Quantum adiabatic algorithm for factorization and its experimental implementation. Phys. Rev. Lett. 101(22), 220405 (2008)ADSCrossRef Peng, X., Liao, Z., Xu, N., et al.: Quantum adiabatic algorithm for factorization and its experimental implementation. Phys. Rev. Lett. 101(22), 220405 (2008)ADSCrossRef
6.
Zurück zum Zitat Boneh, D., Lipton, R.J.: Quantum cryptanalysis of hidden linear functions. In: Annual International Cryptology Conference, pp. 424–437. Springer, Berlin (1995) Boneh, D., Lipton, R.J.: Quantum cryptanalysis of hidden linear functions. In: Annual International Cryptology Conference, pp. 424–437. Springer, Berlin (1995)
7.
Zurück zum Zitat Biamonte, J., Wittek, P., Pancotti, N., et al.: Quantum machine learning. Nature 549(7671), 195 (2017)ADSCrossRef Biamonte, J., Wittek, P., Pancotti, N., et al.: Quantum machine learning. Nature 549(7671), 195 (2017)ADSCrossRef
8.
Zurück zum Zitat Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
9.
Zurück zum Zitat Neill, C., Roushan, P., Kechedzhi, K., et al.: A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360(6385), 195–199 (2018)ADSMathSciNetCrossRef Neill, C., Roushan, P., Kechedzhi, K., et al.: A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360(6385), 195–199 (2018)ADSMathSciNetCrossRef
10.
Zurück zum Zitat Ballance, C.J., Harty, T.P., Linke, N.M., et al.: High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117(6), 060504 (2016)ADSCrossRef Ballance, C.J., Harty, T.P., Linke, N.M., et al.: High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117(6), 060504 (2016)ADSCrossRef
11.
Zurück zum Zitat Schäfer, V.M., Ballance, C.J., Thirumalai, K., et al.: Fast quantum logic gates with trapped-ion qubits. Nature 555(7694), 75 (2018)ADSCrossRef Schäfer, V.M., Ballance, C.J., Thirumalai, K., et al.: Fast quantum logic gates with trapped-ion qubits. Nature 555(7694), 75 (2018)ADSCrossRef
12.
Zurück zum Zitat Li, X., Wu, Y., Steel, D., et al.: An all-optical quantum gate in a semiconductor quantum dot. Science 301(5634), 809–811 (2003)ADSCrossRef Li, X., Wu, Y., Steel, D., et al.: An all-optical quantum gate in a semiconductor quantum dot. Science 301(5634), 809–811 (2003)ADSCrossRef
13.
Zurück zum Zitat Nichol, J.M., Orona, L.A., Harvey, S.P., et al.: High-fidelity entangling gate for double-quantum-dot spin qubits. npj Quantum Inf. 3(1), 3 (2017)ADSCrossRef Nichol, J.M., Orona, L.A., Harvey, S.P., et al.: High-fidelity entangling gate for double-quantum-dot spin qubits. npj Quantum Inf. 3(1), 3 (2017)ADSCrossRef
14.
Zurück zum Zitat Petrosyan, D., Motzoi, F., Saffman, M., et al.: High-fidelity Rydberg quantum gate via a two-atom dark state. Phys. Rev. A 96(4), 042306 (2017)ADSCrossRef Petrosyan, D., Motzoi, F., Saffman, M., et al.: High-fidelity Rydberg quantum gate via a two-atom dark state. Phys. Rev. A 96(4), 042306 (2017)ADSCrossRef
15.
Zurück zum Zitat Tiarks, D., Schmidt-Eberle, S., Stolz, T., et al.: A photon-photon quantum gate based on Rydberg interactions. Nat. Phys. 15(2), 124 (2019)CrossRef Tiarks, D., Schmidt-Eberle, S., Stolz, T., et al.: A photon-photon quantum gate based on Rydberg interactions. Nat. Phys. 15(2), 124 (2019)CrossRef
16.
Zurück zum Zitat Burkard, G., Shkolnikov, V.O., Awschalom, D.D.: Designing a cavity-mediated quantum CPHASE gate between NV spin qubits in diamond. Phys. Rev. B 95(20), 205420 (2017)ADSCrossRef Burkard, G., Shkolnikov, V.O., Awschalom, D.D.: Designing a cavity-mediated quantum CPHASE gate between NV spin qubits in diamond. Phys. Rev. B 95(20), 205420 (2017)ADSCrossRef
17.
Zurück zum Zitat Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92(12), 127902 (2004)ADSCrossRef Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92(12), 127902 (2004)ADSCrossRef
18.
Zurück zum Zitat Hacker, B., Welte, S., Rempe, G., et al.: A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536(7615), 193 (2016)ADSCrossRef Hacker, B., Welte, S., Rempe, G., et al.: A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536(7615), 193 (2016)ADSCrossRef
19.
Zurück zum Zitat Borregaard, J., Komar, P., Kessler, E.M., et al.: Heralded quantum gates with integrated error detection in optical cavities. Phys. Rev. Lett. 114(11), 110502 (2015)ADSCrossRef Borregaard, J., Komar, P., Kessler, E.M., et al.: Heralded quantum gates with integrated error detection in optical cavities. Phys. Rev. Lett. 114(11), 110502 (2015)ADSCrossRef
20.
Zurück zum Zitat Borges, H.S., Rossatto, D.Z., Luiz, F.S., et al.: Heralded entangling quantum gate via cavity-assisted photon scattering. Phys. Rev. A 97(1), 013828 (2018)ADSCrossRef Borges, H.S., Rossatto, D.Z., Luiz, F.S., et al.: Heralded entangling quantum gate via cavity-assisted photon scattering. Phys. Rev. A 97(1), 013828 (2018)ADSCrossRef
21.
Zurück zum Zitat Lahad, O., Firstenberg, O.: Induced cavities for photonic quantum gates. Phys. Rev. Lett. 119(11), 113601 (2017)ADSCrossRef Lahad, O., Firstenberg, O.: Induced cavities for photonic quantum gates. Phys. Rev. Lett. 119(11), 113601 (2017)ADSCrossRef
22.
Zurück zum Zitat Alqahtani, M.M.: Multiphoton process in cavity QED photons for implementing a three-qubit quantum gate operation. Quantum Inf. Process. 19(1), 12 (2020)ADSMathSciNetCrossRef Alqahtani, M.M.: Multiphoton process in cavity QED photons for implementing a three-qubit quantum gate operation. Quantum Inf. Process. 19(1), 12 (2020)ADSMathSciNetCrossRef
23.
Zurück zum Zitat Brecht, T., Pfaff, W., Wang, C., et al.: Multilayer microwave integrated quantum circuits for scalable quantum computing. Npj Quantum Inf. 2, 16002 (2016)ADSCrossRef Brecht, T., Pfaff, W., Wang, C., et al.: Multilayer microwave integrated quantum circuits for scalable quantum computing. Npj Quantum Inf. 2, 16002 (2016)ADSCrossRef
24.
Zurück zum Zitat Welte, S., Hacker, B., Daiss, S., et al.: Photon-mediated quantum gate between two neutral atoms in an optical cavity. Phys. Rev. X 8(1), 011018 (2018) Welte, S., Hacker, B., Daiss, S., et al.: Photon-mediated quantum gate between two neutral atoms in an optical cavity. Phys. Rev. X 8(1), 011018 (2018)
25.
Zurück zum Zitat Lekitsch, B., Weidt, S., Fowler, A.G., et al.: Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3(2), e1601540 (2017)ADSCrossRef Lekitsch, B., Weidt, S., Fowler, A.G., et al.: Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3(2), e1601540 (2017)ADSCrossRef
26.
Zurück zum Zitat Chou, K.S., Blumoff, J.Z., Wang, C.S., et al.: Deterministic teleportation of a quantum gate between two logical qubits. Nature 561(7723), 368 (2018)ADSCrossRef Chou, K.S., Blumoff, J.Z., Wang, C.S., et al.: Deterministic teleportation of a quantum gate between two logical qubits. Nature 561(7723), 368 (2018)ADSCrossRef
27.
Zurück zum Zitat Wan, Y., Kienzler, D., Erickson, S.D., et al.: Quantum gate teleportation between separated qubits in a trapped-ion processor. Science 364(6443), 875–878 (2019)ADSCrossRef Wan, Y., Kienzler, D., Erickson, S.D., et al.: Quantum gate teleportation between separated qubits in a trapped-ion processor. Science 364(6443), 875–878 (2019)ADSCrossRef
28.
Zurück zum Zitat Beaudoin, F., Lachance-Quirion, D., Coish, W.A., et al.: Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings. Nanotechnology 27(46), 464003 (2016)CrossRef Beaudoin, F., Lachance-Quirion, D., Coish, W.A., et al.: Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings. Nanotechnology 27(46), 464003 (2016)CrossRef
29.
Zurück zum Zitat Richer, S., Maleeva, N., Skacel, S.T., et al.: Inductively shunted transmon qubit with tunable transverse and longitudinal coupling. Phys. Rev. B 96(17), 174520 (2017)ADSCrossRef Richer, S., Maleeva, N., Skacel, S.T., et al.: Inductively shunted transmon qubit with tunable transverse and longitudinal coupling. Phys. Rev. B 96(17), 174520 (2017)ADSCrossRef
30.
Zurück zum Zitat Lambert, N., Cirio, M., Delbecq, M., et al.: Amplified and tunable transverse and longitudinal spin-photon coupling in hybrid circuit-QED. Phys. Rev. B 97(12), 125429 (2018)ADSCrossRef Lambert, N., Cirio, M., Delbecq, M., et al.: Amplified and tunable transverse and longitudinal spin-photon coupling in hybrid circuit-QED. Phys. Rev. B 97(12), 125429 (2018)ADSCrossRef
31.
Zurück zum Zitat Schuetz, M.J.A., Giedke, G., Vandersypen, L.M.K., et al.: High-fidelity hot gates for generic spin-resonator systems. Phys. Rev. A 95(5), 052335 (2017)ADSCrossRef Schuetz, M.J.A., Giedke, G., Vandersypen, L.M.K., et al.: High-fidelity hot gates for generic spin-resonator systems. Phys. Rev. A 95(5), 052335 (2017)ADSCrossRef
32.
Zurück zum Zitat Warren, A., Barnes, E., Economou, S.E.: Long-distance entangling gates between quantum dot spins mediated by a superconducting resonator. Phys. Rev. B 100(16), 161303 (2019)ADSCrossRef Warren, A., Barnes, E., Economou, S.E.: Long-distance entangling gates between quantum dot spins mediated by a superconducting resonator. Phys. Rev. B 100(16), 161303 (2019)ADSCrossRef
33.
Zurück zum Zitat Chen, X.Y., Yin, Z.: Universal quantum gates between nitrogen-vacancy centers in a levitated nanodiamond. Phys. Rev. A 99(2), 022319 (2019)ADSMathSciNetCrossRef Chen, X.Y., Yin, Z.: Universal quantum gates between nitrogen-vacancy centers in a levitated nanodiamond. Phys. Rev. A 99(2), 022319 (2019)ADSMathSciNetCrossRef
34.
Zurück zum Zitat Maslov, D., Miller, D.M.: Comparison of the cost metrics through investigation of the relation between optimal NCV and optimal NCT three-qubit reversible circuits. IET Comput. Digit. Tech. 1(2), 98–104 (2007)CrossRef Maslov, D., Miller, D.M.: Comparison of the cost metrics through investigation of the relation between optimal NCV and optimal NCT three-qubit reversible circuits. IET Comput. Digit. Tech. 1(2), 98–104 (2007)CrossRef
35.
Zurück zum Zitat Maslov, D., Young, C., Miller, D.M., et al.: Quantum circuit simplification using templates. In: Proceedings of the Conference on Design, Automation and Test in Europe, Vol. 2, pp. 1208–1213. IEEE Computer Society (2005) Maslov, D., Young, C., Miller, D.M., et al.: Quantum circuit simplification using templates. In: Proceedings of the Conference on Design, Automation and Test in Europe, Vol. 2, pp. 1208–1213. IEEE Computer Society (2005)
36.
Zurück zum Zitat Tan, Y., Cheng, X., Guan, Z., et al.: Multi-strategy based quantum cost reduction of linear nearest-neighbor quantum circuit. Quantum Inf. Process. 17(3), 61 (2018)ADSMathSciNetCrossRef Tan, Y., Cheng, X., Guan, Z., et al.: Multi-strategy based quantum cost reduction of linear nearest-neighbor quantum circuit. Quantum Inf. Process. 17(3), 61 (2018)ADSMathSciNetCrossRef
37.
Zurück zum Zitat Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffoli gates. In: 2011 41st IEEE International Symposium on Multiple-Valued Logic, pp. 288–293. IEEE (2011) Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffoli gates. In: 2011 41st IEEE International Symposium on Multiple-Valued Logic, pp. 288–293. IEEE (2011)
38.
Zurück zum Zitat Frey, T., Leek, P.J., Beck, M., et al.: Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett. 108(4), 046807 (2012)ADSCrossRef Frey, T., Leek, P.J., Beck, M., et al.: Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett. 108(4), 046807 (2012)ADSCrossRef
39.
Zurück zum Zitat Gullans, M.J., Liu, Y.Y., Stehlik, J., et al.: Phonon-assisted gain in a semiconductor double quantum dot maser. Phys. Rev. Lett. 114(19), 196802 (2015)ADSCrossRef Gullans, M.J., Liu, Y.Y., Stehlik, J., et al.: Phonon-assisted gain in a semiconductor double quantum dot maser. Phys. Rev. Lett. 114(19), 196802 (2015)ADSCrossRef
40.
Zurück zum Zitat Childress, L., Sørensen, A.S., Lukin, M.D.: Mesoscopic cavity quantum electrodynamics with quantum dots. Phys. Rev. A 69(4), 042302 (2004)ADSCrossRef Childress, L., Sørensen, A.S., Lukin, M.D.: Mesoscopic cavity quantum electrodynamics with quantum dots. Phys. Rev. A 69(4), 042302 (2004)ADSCrossRef
41.
Zurück zum Zitat Wang, X., Miranowicz, A., Li, H.R., et al.: Multiple-output microwave single-photon source using superconducting circuits with longitudinal and transverse couplings. Phys. Rev. A 94(5), 053858 (2016)ADSCrossRef Wang, X., Miranowicz, A., Li, H.R., et al.: Multiple-output microwave single-photon source using superconducting circuits with longitudinal and transverse couplings. Phys. Rev. A 94(5), 053858 (2016)ADSCrossRef
42.
Zurück zum Zitat Wang, R., Deacon, R.S., Sun, J., et al.: Gate tunable hole charge qubit formed in a Ge/Si nanowire double quantum dot coupled to microwave photons. Nano Lett. 19, 1052–1060 (2019)ADSCrossRef Wang, R., Deacon, R.S., Sun, J., et al.: Gate tunable hole charge qubit formed in a Ge/Si nanowire double quantum dot coupled to microwave photons. Nano Lett. 19, 1052–1060 (2019)ADSCrossRef
43.
Zurück zum Zitat Xu, G., Li, Y., Gao F., et al.: Dipole coupling of a tunable hole double quantum dot in germanium hut wire to a microwave resonator. arXiv:1905.01586 (2019) Xu, G., Li, Y., Gao F., et al.: Dipole coupling of a tunable hole double quantum dot in germanium hut wire to a microwave resonator. arXiv:​1905.​01586 (2019)
44.
Zurück zum Zitat Ibberson, D.J., Lundberg, T., Haigh, J.A., et al.: Large dispersive interaction between a CMOS double quantum dot and microwave photons. arXiv:2004.00334 (2020) Ibberson, D.J., Lundberg, T., Haigh, J.A., et al.: Large dispersive interaction between a CMOS double quantum dot and microwave photons. arXiv:​2004.​00334 (2020)
Metadaten
Titel
Elementary quantum gates between long-distance qubits mediated by a resonator
verfasst von
Ming-Cui Li
Ai-Xi Chen
Publikationsdatum
01.10.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 10/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02858-4

Weitere Artikel der Ausgabe 10/2020

Quantum Information Processing 10/2020 Zur Ausgabe

Neuer Inhalt