Skip to main content

2013 | OriginalPaper | Buchkapitel

9. Elementary Solutions and Analytical Discrete-Ordinates for Radiative Transfer

verfasst von : Laurent Gosse

Erschienen in: Computing Qualitatively Correct Approximations of Balance Laws

Verlag: Springer Milan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is entirely devoted to the exposition of the method of elementary solutions, which has been introduced and developed during the 50’s–60’s mainly by Chandrasekhar, Case, Cercignani, Siewert and Zweifel. In particular, Chandrasekhar’s discrete ordinates approximation has been refined by Siewert and his collaborators into a so-called analytical discrete ordinates (ADO) method through a systematic use of elementary solutions. It appeared that it was exactly what is needed in order to set up a time-dependent well-balanced numerical scheme for linear kinetic equations by furnishing an explicit scattering matrix at each interface of the computational grid. The main goal is first to derive a WB scheme which solves the Cauchy problem for a simple model of “grey” radiative transfer:
$$ \begin{array}{cc} {\partial}_tf+v{\partial}_xf=\frac{c}{2}{\displaystyle {\int}_{-1}^1f\left(t,x,{v}^{\prime}\right)d{v}^{\prime }-f,} & v\in \left[-1,1\right],x\in \mathbb{R},t>0. \end{array} $$

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arianfar P., Emamirad H.: Relation between scattering and albedo operators in linear transport theory. Transport Theory and Statistical Physics 23, 517–531 (1994)CrossRefMATHMathSciNet Arianfar P., Emamirad H.: Relation between scattering and albedo operators in linear transport theory. Transport Theory and Statistical Physics 23, 517–531 (1994)CrossRefMATHMathSciNet
2.
Zurück zum Zitat Arnold A., Carrillo J.A., Tidriri M.D.: Large-time behavior of discrete equations with non-symmetric interactions. Math. Mod. Meth. in Appl. Sci. 12, 1555–1564 (2002)CrossRefMATHMathSciNet Arnold A., Carrillo J.A., Tidriri M.D.: Large-time behavior of discrete equations with non-symmetric interactions. Math. Mod. Meth. in Appl. Sci. 12, 1555–1564 (2002)CrossRefMATHMathSciNet
3.
Zurück zum Zitat Aronson R.: Relation between the transfer matrix method and Case’s method. Transp. Theory Statist. Phys. 1, 209–224 (1971)CrossRefMathSciNet Aronson R.: Relation between the transfer matrix method and Case’s method. Transp. Theory Statist. Phys. 1, 209–224 (1971)CrossRefMathSciNet
4.
Zurück zum Zitat Bardos C., Golse F., Perthame B., Sentis R.: The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation. J. Funct. Anal. 77, 434–460 (1988)CrossRefMATHMathSciNet Bardos C., Golse F., Perthame B., Sentis R.: The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation. J. Funct. Anal. 77, 434–460 (1988)CrossRefMATHMathSciNet
5.
Zurück zum Zitat Barichello L.B., Siewert C.E.: A new version of the discrete-ordinates method. Proc. of the 2nd Conf. on Comput. Heat and Mass Transfer (COPPE/EE/UFRJ), 22–26 October 2001 Barichello L.B., Siewert C.E.: A new version of the discrete-ordinates method. Proc. of the 2nd Conf. on Comput. Heat and Mass Transfer (COPPE/EE/UFRJ), 22–26 October 2001
6.
Zurück zum Zitat Barichello L.B., Camargo M., Rodrigues P., Siewert C.E.: Unified Solutions to Classical Flow Problems Based on the BGK Model. ZAMP 52, 517–534 (2001)CrossRefMATHMathSciNet Barichello L.B., Camargo M., Rodrigues P., Siewert C.E.: Unified Solutions to Classical Flow Problems Based on the BGK Model. ZAMP 52, 517–534 (2001)CrossRefMATHMathSciNet
7.
Zurück zum Zitat Barichello L.B., Siewert C.E.: A discrete-ordinates solution for a non-grey model with complete frequency redistribution. JQSRT 62, 665–675 (1999)CrossRef Barichello L.B., Siewert C.E.: A discrete-ordinates solution for a non-grey model with complete frequency redistribution. JQSRT 62, 665–675 (1999)CrossRef
8.
Zurück zum Zitat Berthon C., Charrier P., Dubroca B.: An asymptotic preserving relaxation scheme for a moment model of radiative transfer Comptes rendus Math. 344, 467–472 (2007)CrossRefMATHMathSciNet Berthon C., Charrier P., Dubroca B.: An asymptotic preserving relaxation scheme for a moment model of radiative transfer Comptes rendus Math. 344, 467–472 (2007)CrossRefMATHMathSciNet
9.
Zurück zum Zitat Bobylev A.V., Struckmeier J.: Numerical simulation of the stationary one-dimensional Boltzmann equation by particle methods. European Journal of Mechanics, B/Fluids 15, 103–118 (1996)MATHMathSciNet Bobylev A.V., Struckmeier J.: Numerical simulation of the stationary one-dimensional Boltzmann equation by particle methods. European Journal of Mechanics, B/Fluids 15, 103–118 (1996)MATHMathSciNet
10.
Zurück zum Zitat Buet C., Despres B.: Asymptotic-preserving and positive schemes for radiation hydrodynamics. J. Comp. Phys. 215, 717–740 (2006)CrossRefMATHMathSciNet Buet C., Despres B.: Asymptotic-preserving and positive schemes for radiation hydrodynamics. J. Comp. Phys. 215, 717–740 (2006)CrossRefMATHMathSciNet
11.
Zurück zum Zitat Cargo P., Samba G.: Resolution of the time dependent P n equations by a Godunov type scheme having the diffusion limit. ESAIM: Math. Model. Numer. Anal. (M2AN) 44, 1193–1224 (2010)CrossRefMATHMathSciNet Cargo P., Samba G.: Resolution of the time dependent P n equations by a Godunov type scheme having the diffusion limit. ESAIM: Math. Model. Numer. Anal. (M2AN) 44, 1193–1224 (2010)CrossRefMATHMathSciNet
13.
Zurück zum Zitat Case K.M., Zweifel P.F.: Linear transport theory. Addison-Wesley series in nuclear engineering. Addison-Wesley, Boston (1967)MATH Case K.M., Zweifel P.F.: Linear transport theory. Addison-Wesley series in nuclear engineering. Addison-Wesley, Boston (1967)MATH
14.
Zurück zum Zitat Cercignani C.: The method of elementary solutions for kinetic models with velocity dependent collision frequency. Ann. Physics 40, 469 (1966)CrossRef Cercignani C.: The method of elementary solutions for kinetic models with velocity dependent collision frequency. Ann. Physics 40, 469 (1966)CrossRef
15.
Zurück zum Zitat Cercignani C.: Solution of a linearized kinetic model for an ultrarelativistic gas. J. Stat. Phys. 42, 601–620 (1986)CrossRefMathSciNet Cercignani C.: Solution of a linearized kinetic model for an ultrarelativistic gas. J. Stat. Phys. 42, 601–620 (1986)CrossRefMathSciNet
16.
Zurück zum Zitat Cercignani C.: The Boltzmann equation and its applications. Applied Mathematical Sciences vol. 67. Springer-Verlag, New York (1988) Cercignani C.: The Boltzmann equation and its applications. Applied Mathematical Sciences vol. 67. Springer-Verlag, New York (1988)
17.
18.
Zurück zum Zitat DeBarros R.C., Larsen E.: A numerical method for one-group slab-geometry discrete ordinates problem with no spatial truncation error. Nucl. Sc. Eng. 104, 199–208 (1990)CrossRef DeBarros R.C., Larsen E.: A numerical method for one-group slab-geometry discrete ordinates problem with no spatial truncation error. Nucl. Sc. Eng. 104, 199–208 (1990)CrossRef
19.
Zurück zum Zitat DeBarros R.C., Larsen E.: A numerical method for multigroup slab-geometry discrete ordinates problems with no spatial truncation error. Transport Theory and Statistical Physics 20, 441–462 (1991)CrossRefMATHMathSciNet DeBarros R.C., Larsen E.: A numerical method for multigroup slab-geometry discrete ordinates problems with no spatial truncation error. Transport Theory and Statistical Physics 20, 441–462 (1991)CrossRefMATHMathSciNet
20.
Zurück zum Zitat Desvillettes L., Salvarani F.: Asymptotic behavior of degenerate linear transport equations. Bull. Sci. Math. 133, 848–858 (2009)CrossRefMATHMathSciNet Desvillettes L., Salvarani F.: Asymptotic behavior of degenerate linear transport equations. Bull. Sci. Math. 133, 848–858 (2009)CrossRefMATHMathSciNet
21.
22.
23.
Zurück zum Zitat Golse F., Jin S., Levermore C.D.: The convergence of numerical transfer schemes in diffusive regimes I: The Discrete-Ordinate Method. SIAM J. Num. Anal. 36, 1333–1369 (1999)CrossRefMATHMathSciNet Golse F., Jin S., Levermore C.D.: The convergence of numerical transfer schemes in diffusive regimes I: The Discrete-Ordinate Method. SIAM J. Num. Anal. 36, 1333–1369 (1999)CrossRefMATHMathSciNet
24.
Zurück zum Zitat Golse F., Perthame B.: Generalized solutions of the radiative transfer equations in a singular case. Comm. Math. Phys. 106, 211–239 (1986)CrossRefMATHMathSciNet Golse F., Perthame B.: Generalized solutions of the radiative transfer equations in a singular case. Comm. Math. Phys. 106, 211–239 (1986)CrossRefMATHMathSciNet
25.
Zurück zum Zitat Gosse L.: Time-splitting schemes and measure source terms for a quasilinear relaxing system. Math. Models Methods Appl. Sci. 13, 1081–1101 (2003)CrossRefMATHMathSciNet Gosse L.: Time-splitting schemes and measure source terms for a quasilinear relaxing system. Math. Models Methods Appl. Sci. 13, 1081–1101 (2003)CrossRefMATHMathSciNet
26.
Zurück zum Zitat Greenberg W., Van der Mee C.V.M., Protopopescu V.: Boundary value problems in abstract kinetic theory. Birkhäuser (1987) Greenberg W., Van der Mee C.V.M., Protopopescu V.: Boundary value problems in abstract kinetic theory. Birkhäuser (1987)
27.
28.
29.
Zurück zum Zitat Hauck C.D., Lowrie R.B.: Temporal regularization of the P N equations. SIAM: Math. Model. Simul. 7, 1497–1524 (2009)MATHMathSciNet Hauck C.D., Lowrie R.B.: Temporal regularization of the P N equations. SIAM: Math. Model. Simul. 7, 1497–1524 (2009)MATHMathSciNet
30.
Zurück zum Zitat Helzel C., LeVeque R.J., Warnecke G.: A Modified Fractional Step Method for the Accurate Approximation of Detonation Waves. SIAM J. Sci. Comput. 22, 1489–1510 (2000)CrossRefMATHMathSciNet Helzel C., LeVeque R.J., Warnecke G.: A Modified Fractional Step Method for the Accurate Approximation of Detonation Waves. SIAM J. Sci. Comput. 22, 1489–1510 (2000)CrossRefMATHMathSciNet
31.
32.
Zurück zum Zitat Jin S., Pareschi L., Toscani G.: Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38, 913–936 (2000)CrossRefMATHMathSciNet Jin S., Pareschi L., Toscani G.: Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38, 913–936 (2000)CrossRefMATHMathSciNet
33.
Zurück zum Zitat Jin S., Tang M., Han H.: On a uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface. Networks Heter. Media 4, 35–65 (2009)CrossRefMATHMathSciNet Jin S., Tang M., Han H.: On a uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface. Networks Heter. Media 4, 35–65 (2009)CrossRefMATHMathSciNet
34.
Zurück zum Zitat Kaper H.G., Lekkerkerker C.G., Hejtmanek J.: Spectral Methods in Linear Transport Theory. Birkhäuser Verlag, Basel (1982).MATH Kaper H.G., Lekkerkerker C.G., Hejtmanek J.: Spectral Methods in Linear Transport Theory. Birkhäuser Verlag, Basel (1982).MATH
35.
Zurück zum Zitat Kaper H.G., Shultis J.K., Veninga J.G.: Numerical Evaluation of the Slab Albedo Problem Solution in One-Speed Anisotropic Transport Theory. J. Comput. Phys. 6, 288–313 (1970)CrossRefMATHMathSciNet Kaper H.G., Shultis J.K., Veninga J.G.: Numerical Evaluation of the Slab Albedo Problem Solution in One-Speed Anisotropic Transport Theory. J. Comput. Phys. 6, 288–313 (1970)CrossRefMATHMathSciNet
36.
Zurück zum Zitat Klar A.: An asymptotic induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35, 1073–1094 (1998)CrossRefMATHMathSciNet Klar A.: An asymptotic induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35, 1073–1094 (1998)CrossRefMATHMathSciNet
37.
38.
Zurück zum Zitat Kuzmin D.: A guide to Numerical methods for transport equations. Univ. Nürnberg (2010) Kuzmin D.: A guide to Numerical methods for transport equations. Univ. Nürnberg (2010)
39.
Zurück zum Zitat Isaacson E., Temple B.: Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55, 625–640 (1995)CrossRefMATHMathSciNet Isaacson E., Temple B.: Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55, 625–640 (1995)CrossRefMATHMathSciNet
40.
Zurück zum Zitat Lapeyre B., Pardoux E., Sentis R.: Méthodes de Monte Carlo pour les équations de transport et de diffusion. Springer (1998) Lapeyre B., Pardoux E., Sentis R.: Méthodes de Monte Carlo pour les équations de transport et de diffusion. Springer (1998)
41.
Zurück zum Zitat LeFloch P., Tzavaras A.E.: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30, 1309–1342 (1999)CrossRefMATHMathSciNet LeFloch P., Tzavaras A.E.: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30, 1309–1342 (1999)CrossRefMATHMathSciNet
42.
Zurück zum Zitat Mercier B.: Application of accretive operators theory to the radiative transfer equations. SIAM J. of Math. Anal. 18, 393–408 (1987)CrossRefMATHMathSciNet Mercier B.: Application of accretive operators theory to the radiative transfer equations. SIAM J. of Math. Anal. 18, 393–408 (1987)CrossRefMATHMathSciNet
44.
Zurück zum Zitat Reiter D.: The Monte Carlo method for particle transport problems. In: Fehske H., Schneider R., Weiße A. (eds.) Computational many-particle physics, pp. 141–158. Springer-Verlag. Berlin Heidelberg (2008) Reiter D.: The Monte Carlo method for particle transport problems. In: Fehske H., Schneider R., Weiße A. (eds.) Computational many-particle physics, pp. 141–158. Springer-Verlag. Berlin Heidelberg (2008)
45.
Zurück zum Zitat Rutily B., Bergeat J.: The solution of the transfer equation in an homogeneous isotropically scattering plane-parallel medium. JQSRT 52, 857–885 (1994)CrossRef Rutily B., Bergeat J.: The solution of the transfer equation in an homogeneous isotropically scattering plane-parallel medium. JQSRT 52, 857–885 (1994)CrossRef
47.
Zurück zum Zitat Schroll H.J., Tveito A., Winther R.: An L1-error bound for a finite difference scheme applied to a stiff system of conservation laws. SIAM J. of Numer. Anal. 34, 1152–1166 (1997)CrossRefMATH Schroll H.J., Tveito A., Winther R.: An L1-error bound for a finite difference scheme applied to a stiff system of conservation laws. SIAM J. of Numer. Anal. 34, 1152–1166 (1997)CrossRefMATH
48.
Zurück zum Zitat Siewert C.E., Wright S.J.: Efficient eigenvalue calculations in radiative transfer. J. Quant. Spectro. Radiat. Transf., 685–688 (1999) Siewert C.E., Wright S.J.: Efficient eigenvalue calculations in radiative transfer. J. Quant. Spectro. Radiat. Transf., 685–688 (1999)
49.
Zurück zum Zitat Spanier J., Gelbard E.M.: Monte Carlo Principles and Neutron Transport Problems. Dover publishing, Mineola (2008)MATH Spanier J., Gelbard E.M.: Monte Carlo Principles and Neutron Transport Problems. Dover publishing, Mineola (2008)MATH
50.
51.
Zurück zum Zitat Stamnes K., Tsay S.C., Wiscombe W.: K. Jayaweera, Numerically stable algorithm fordiscrete-ordinate method radiative transfer in multiple scattering and emitting layered media. Applied Optics 27, 2502–2509 (1988)CrossRef Stamnes K., Tsay S.C., Wiscombe W.: K. Jayaweera, Numerically stable algorithm fordiscrete-ordinate method radiative transfer in multiple scattering and emitting layered media. Applied Optics 27, 2502–2509 (1988)CrossRef
52.
Zurück zum Zitat Su B., Olson G.L.: An Analytical Benchmark for Non-Equilibrium Radiative Transfer in an Isotropically Scattering Medium. Ann. Nucl. Energy 24, 1035–1055 (1997)CrossRef Su B., Olson G.L.: An Analytical Benchmark for Non-Equilibrium Radiative Transfer in an Isotropically Scattering Medium. Ann. Nucl. Energy 24, 1035–1055 (1997)CrossRef
54.
Zurück zum Zitat Van der Mee C.: Exponentially dichotomous operators and applications. Birkhäuser Verlag, Basel Boston Berlin (2008)MATH Van der Mee C.: Exponentially dichotomous operators and applications. Birkhäuser Verlag, Basel Boston Berlin (2008)MATH
56.
Zurück zum Zitat Yang X., Golse F., Huang Z., Jin S.: Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks Heter. Media 1, 149–166 (2006)MATHMathSciNet Yang X., Golse F., Huang Z., Jin S.: Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks Heter. Media 1, 149–166 (2006)MATHMathSciNet
Metadaten
Titel
Elementary Solutions and Analytical Discrete-Ordinates for Radiative Transfer
verfasst von
Laurent Gosse
Copyright-Jahr
2013
Verlag
Springer Milan
DOI
https://doi.org/10.1007/978-88-470-2892-0_9