Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 1/2017

03.11.2016

Elevated Temperature Effects on the Plastic Anisotropy of an Extruded Mg-4 Wt Pct Li Alloy: Experiments and Polycrystal Modeling

verfasst von: Marcel Risse, Martin Lentz, Christoph Fahrenson, Walter Reimers, Marko Knezevic, Irene J. Beyerlein

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we study the deformation behavior of Mg-4 wt pct Li in uniaxial tension as a function of temperature and loading direction. Standard tensile tests were performed at temperatures in the range of 293 K (20 °C) ≤ T ≤ 473 K (200 °C) and in two in-plane directions: the extrusion and the transverse. We find that while the in-plane plastic anisotropy (PA) decreases with temperature, the anisotropy in failure strain and texture development increases. To uncover the temperature dependence in the critical stresses for slip and in the amounts of slip and twinning systems mediating deformation, we employ the elastic-plastic self-consistent polycrystal plasticity model with a thermally activated dislocation density based hardening law for activating slip with individual crystals. We demonstrate that the model, with a single set of intrinsic material parameters, achieves good agreement with the stress–strain curves, deformation textures, and intragranular misorientation axis analysis for all test directions and temperatures. With the model, we show that at all temperatures the in-plane tensile behavior is driven primarily by \( \left\langle a \right\rangle \) slip and both \( \left\langle {c + a} \right\rangle \) slip and twinning play a minor role. The analysis explains that the in-plane PA decreases and failure strains increase with temperature as a result of a significant reduction in the activation stress for pyramidal \( \left\langle {c + a} \right\rangle \) slip, which effectively promotes strain accommodation from multiple types of \( \left\langle a \right\rangle \) and \( \left\langle {c + a} \right\rangle \) slip. The results also show that because of the strong initial texture, in-plane texture development is anisotropic since prismatic slip dominates the deformation in one test, although it is not the easiest slip mode, and basal slip in the other. These findings reveal the relationship between the temperature-sensitive thresholds needed to activate crystallographic slip and the development of texture and macroscopic PA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37–45.CrossRef B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37–45.CrossRef
2.
Zurück zum Zitat Partnership, USAM, Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium, 2006. Partnership, USAM, Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium, 2006.
4.
Zurück zum Zitat C.S. Roberts: Magnesium and Its Alloys, Wiley, New York, NY, 1960. C.S. Roberts: Magnesium and Its Alloys, Wiley, New York, NY, 1960.
5.
Zurück zum Zitat E.W. Kelly and W.F. Hosford: Trans. TMS-AIME, 1968, vol. 242, pp. 5–13. E.W. Kelly and W.F. Hosford: Trans. TMS-AIME, 1968, vol. 242, pp. 5–13.
6.
Zurück zum Zitat X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner: Int. J. Plasticity, 2007, vol. 23, pp. 44–86.CrossRef X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner: Int. J. Plasticity, 2007, vol. 23, pp. 44–86.CrossRef
7.
Zurück zum Zitat T. Obara, H. Yoshinga, and S. Morozumi: Acta Metall., 1973, vol. 21, pp. 845–53.CrossRef T. Obara, H. Yoshinga, and S. Morozumi: Acta Metall., 1973, vol. 21, pp. 845–53.CrossRef
8.
Zurück zum Zitat S.R. Agnew and O. Duygulu: in Mechanisms Technology, Alan A. Lou, ed., TMS, Warrendale, PA, 2004, pp. 61–66. S.R. Agnew and O. Duygulu: in Mechanisms Technology, Alan A. Lou, ed., TMS, Warrendale, PA, 2004, pp. 61–66.
9.
Zurück zum Zitat Z. Keshavarz and M.R. Barnett: Scripta Mater., 2006, vol. 55, pp. 915–18.CrossRef Z. Keshavarz and M.R. Barnett: Scripta Mater., 2006, vol. 55, pp. 915–18.CrossRef
10.
Zurück zum Zitat O. Muránsky, D.G. Carr, M.R. Barnett, E.C. Oliver, and P. Sittner: Mater. Sci. Eng., 2008, vol. A496, pp. 14–24.CrossRef O. Muránsky, D.G. Carr, M.R. Barnett, E.C. Oliver, and P. Sittner: Mater. Sci. Eng., 2008, vol. A496, pp. 14–24.CrossRef
11.
Zurück zum Zitat J.F. Stohr and J.P. Poirier: Magn. Phil. Mag., 1972, vol. 25, pp. 1313–29.CrossRef J.F. Stohr and J.P. Poirier: Magn. Phil. Mag., 1972, vol. 25, pp. 1313–29.CrossRef
12.
Zurück zum Zitat H. Yoshinaga, T. Obara, and S. Morozumi: Mater. Sci. Eng., 1973, vol. 12, pp. 255–64.CrossRef H. Yoshinaga, T. Obara, and S. Morozumi: Mater. Sci. Eng., 1973, vol. 12, pp. 255–64.CrossRef
13.
Zurück zum Zitat S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.CrossRef S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.CrossRef
14.
Zurück zum Zitat T. Al-Samman and G. Gottstein: Mater. Sci. Eng., 2009, vol. A488, pp. 406–14.CrossRef T. Al-Samman and G. Gottstein: Mater. Sci. Eng., 2009, vol. A488, pp. 406–14.CrossRef
15.
Zurück zum Zitat M. Lentz, M. Risse, N. Schaefer, W. Reimers, and I.J. Beyerlein: Nat. Commun., 2016, vol. 7, article number 11068. M. Lentz, M. Risse, N. Schaefer, W. Reimers, and I.J. Beyerlein: Nat. Commun., 2016, vol. 7, article number 11068.
17.
Zurück zum Zitat M. Lentz, M. Klaus, I.J. Beyerlein, M. Zecevic, W. Reimers, and M. Knezevic: Acta Mater., 2015, vol. 86, pp. 254–68.CrossRef M. Lentz, M. Klaus, I.J. Beyerlein, M. Zecevic, W. Reimers, and M. Knezevic: Acta Mater., 2015, vol. 86, pp. 254–68.CrossRef
18.
Zurück zum Zitat S.R. Agnew, J.A. Horton, and M.H. Yoo: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 851–58.CrossRef S.R. Agnew, J.A. Horton, and M.H. Yoo: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 851–58.CrossRef
19.
Zurück zum Zitat N. Stanford, R.K.W. Marceau, and M.R. Barnett: Acta Mater., 2015, vol. 82, pp. 447–56.CrossRef N. Stanford, R.K.W. Marceau, and M.R. Barnett: Acta Mater., 2015, vol. 82, pp. 447–56.CrossRef
20.
Zurück zum Zitat M.R. Barnett, Z. Keshavarz, A.G. Beer, and X. Ma: Acta Mater., 2008, vol. 56, pp. 5–15.CrossRef M.R. Barnett, Z. Keshavarz, A.G. Beer, and X. Ma: Acta Mater., 2008, vol. 56, pp. 5–15.CrossRef
21.
Zurück zum Zitat M. Lentz, R.S. Coelho, B. Camin, C. Fahrenson, N. Schaefer, S. Selve, T. Link, I.J. Beyerlein, and E. Reimers: Mater. Sci. Eng. A, 2014, vol. 610, pp. 54–64.CrossRef M. Lentz, R.S. Coelho, B. Camin, C. Fahrenson, N. Schaefer, S. Selve, T. Link, I.J. Beyerlein, and E. Reimers: Mater. Sci. Eng. A, 2014, vol. 610, pp. 54–64.CrossRef
22.
Zurück zum Zitat R. Hielscher and H. Schaeben: J. Appl. Crystallogr., 2008, vol. 41, pp. 1024–37.CrossRef R. Hielscher and H. Schaeben: J. Appl. Crystallogr., 2008, vol. 41, pp. 1024–37.CrossRef
23.
Zurück zum Zitat S. Gall, R.S. Coelho, S. Müller, and W. Reimers: Mater. Sci. Eng. A, 2013, vol. 579, pp. 180–87.CrossRef S. Gall, R.S. Coelho, S. Müller, and W. Reimers: Mater. Sci. Eng. A, 2013, vol. 579, pp. 180–87.CrossRef
24.
Zurück zum Zitat X. Li, T. Al-Samman, and G. Gottstein: Mater. Lett., 2011, vol. 65, pp. 1907–10.CrossRef X. Li, T. Al-Samman, and G. Gottstein: Mater. Lett., 2011, vol. 65, pp. 1907–10.CrossRef
25.
Zurück zum Zitat X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi: J. Alloys Compds., 2015, vol. 632, pp. 94–102.CrossRef X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi: J. Alloys Compds., 2015, vol. 632, pp. 94–102.CrossRef
26.
Zurück zum Zitat P.A. Turner and C.N. Tomé: Acta Metall. Mater., 1994, vol. 42, pp. 4143–53.CrossRef P.A. Turner and C.N. Tomé: Acta Metall. Mater., 1994, vol. 42, pp. 4143–53.CrossRef
27.
28.
Zurück zum Zitat A.R. Wazzan and L.B. Robinson: Phys. Rev., 1967, vol. 155, pp. 586–94.CrossRef A.R. Wazzan and L.B. Robinson: Phys. Rev., 1967, vol. 155, pp. 586–94.CrossRef
29.
Zurück zum Zitat M. Zecevic and M. Knezevic: Int. J. Plasticity, 2015, vol. 72, pp. 200–17.CrossRef M. Zecevic and M. Knezevic: Int. J. Plasticity, 2015, vol. 72, pp. 200–17.CrossRef
30.
Zurück zum Zitat M. Zecevic, M. Knezevic, I.J. Beyerlein, and C.N. Tomé: Mater. Sci. Eng., 2015, vol. A638, pp. 262–74.CrossRef M. Zecevic, M. Knezevic, I.J. Beyerlein, and C.N. Tomé: Mater. Sci. Eng., 2015, vol. A638, pp. 262–74.CrossRef
31.
Zurück zum Zitat M. Knezevic, M. Zecevic, I.J. Beyerlein, J.F. Bingert, and R.J. McCabe: Acta Mater., 2015, vol. 88, pp. 55–73.CrossRef M. Knezevic, M. Zecevic, I.J. Beyerlein, J.F. Bingert, and R.J. McCabe: Acta Mater., 2015, vol. 88, pp. 55–73.CrossRef
32.
Zurück zum Zitat I.J. Beyerlein and C.N. Tomé: Int. J. Plasticity, 2008, vol. 24, pp. 867–95.CrossRef I.J. Beyerlein and C.N. Tomé: Int. J. Plasticity, 2008, vol. 24, pp. 867–95.CrossRef
33.
Zurück zum Zitat U. Essmann and H. Mughrabi: Phil. Mag., 1979, vol. A40, pp. 731–56.CrossRef U. Essmann and H. Mughrabi: Phil. Mag., 1979, vol. A40, pp. 731–56.CrossRef
34.
Zurück zum Zitat U.F. Kocks and H. Mecking: Progr. Mater. Sci., 2003, vol. 48, pp. 171–273.CrossRef U.F. Kocks and H. Mecking: Progr. Mater. Sci., 2003, vol. 48, pp. 171–273.CrossRef
35.
Zurück zum Zitat H. Mecking and U.F. Kocks: Acta Metall. Mater., 1981, vol. 29, pp. 1865–75.CrossRef H. Mecking and U.F. Kocks: Acta Metall. Mater., 1981, vol. 29, pp. 1865–75.CrossRef
36.
Zurück zum Zitat B. Clausen, C.N. Tomé, D.W. Brown, and S.R. Agnew: Acta Mater., 2008, vol. 56, pp. 2456–68.CrossRef B. Clausen, C.N. Tomé, D.W. Brown, and S.R. Agnew: Acta Mater., 2008, vol. 56, pp. 2456–68.CrossRef
37.
Zurück zum Zitat M. Yamasaki, K. Hagihara, S.I. Inoue, J.P. Hadorn, and Y. Kawamura: Acta Mater., 2013, vol. 61, pp. 2065–76.CrossRef M. Yamasaki, K. Hagihara, S.I. Inoue, J.P. Hadorn, and Y. Kawamura: Acta Mater., 2013, vol. 61, pp. 2065–76.CrossRef
38.
Zurück zum Zitat R. Maddin and N.K. Chen: Progr. Met. Phys., 1954, vol. 5, pp. 53–59.CrossRef R. Maddin and N.K. Chen: Progr. Met. Phys., 1954, vol. 5, pp. 53–59.CrossRef
39.
Zurück zum Zitat E.J. Rapperport and C.S. Hartley: Trans. TMS-AIME, 1960, vol. 218, pp. 869–77. E.J. Rapperport and C.S. Hartley: Trans. TMS-AIME, 1960, vol. 218, pp. 869–77.
40.
Zurück zum Zitat K.Y. Xie, Z. Alam, A. Caffee, and K.J. Hemker: Scripta Mater., 2016, vol. 112, pp. 75–78.CrossRef K.Y. Xie, Z. Alam, A. Caffee, and K.J. Hemker: Scripta Mater., 2016, vol. 112, pp. 75–78.CrossRef
41.
Zurück zum Zitat Q. Yu, L. Qi, R.A. Mishra, J. Li, and A.M. Minor: Proc. National Academy of Sciences of the United States of America, 2013, 110, pp. 13289–13893. Q. Yu, L. Qi, R.A. Mishra, J. Li, and A.M. Minor: Proc. National Academy of Sciences of the United States of America, 2013, 110, pp. 13289–13893.
42.
Zurück zum Zitat S.E. Ion, F.J. Humphreys, and S.H. White: Acta Metall., 1982, vol. 30, pp. 1909–19CrossRef S.E. Ion, F.J. Humphreys, and S.H. White: Acta Metall., 1982, vol. 30, pp. 1909–19CrossRef
43.
Zurück zum Zitat A. Couret and D. Caillard: Acta Metall., 1985, vol. 33, pp. 1447–54.CrossRef A. Couret and D. Caillard: Acta Metall., 1985, vol. 33, pp. 1447–54.CrossRef
44.
Zurück zum Zitat A. Couret and D. Caillard: Acta Metall., 1985, vol. 33, pp. 1455–62.CrossRef A. Couret and D. Caillard: Acta Metall., 1985, vol. 33, pp. 1455–62.CrossRef
45.
Zurück zum Zitat M.H. Yoo, S.R. Agnew, J.R. Morris, and K.M. Ho: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 87–92.CrossRef M.H. Yoo, S.R. Agnew, J.R. Morris, and K.M. Ho: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 87–92.CrossRef
Metadaten
Titel
Elevated Temperature Effects on the Plastic Anisotropy of an Extruded Mg-4 Wt Pct Li Alloy: Experiments and Polycrystal Modeling
verfasst von
Marcel Risse
Martin Lentz
Christoph Fahrenson
Walter Reimers
Marko Knezevic
Irene J. Beyerlein
Publikationsdatum
03.11.2016
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 1/2017
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-016-3780-4

Weitere Artikel der Ausgabe 1/2017

Metallurgical and Materials Transactions A 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.