Skip to main content
Erschienen in: Electrical Engineering 4/2019

08.11.2019 | Original Paper

Eliminating the effect of hot spots on underground power cables using cool pavements

verfasst von: Dardan Klimenta, Dragan Tasić, Bojan Perović, Jelena Klimenta, Miloš Milovanović, Ljiljana Anđelković

Erschienen in: Electrical Engineering | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is well known that hot spots limit the ampacities of underground power cables. There are many commonly applied methods to control the thermal environment in hot spots of underground power cables. However, applications of cool pavements for this specific purpose would be a novelty in the field of power cable engineering. This paper considers the use of different cool pavements in combination with thermally stable bedding and/or pure quartz sand for mitigating or eliminating the thermal effect of an actual hot spot on the ampacities of a 110 kV cable line and a group of four 35 kV three-core cables installed in Belgrade, the Republic of Serbia. In the hot spot, the 110 kV cable line is installed in parallel with the group of 35 kV cables and crosses a district heating pipeline. All distances between these underground installations are lower than the recommended ones, and the 110 kV and 35 kV cables are laid at depths greater than required. The mutual thermal effects between the underground installations in the hot spot are simulated using FEM-based models for different environmental conditions. An experimental background is also provided. In comparison with the corresponding base cases, it has been found that the ampacities of the 110 kV cable line and group of 35 kV cables can be increased up to 25.1% and 60.9% in summer, and up to 62.8% and 170% in winter, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Klimenta D, Jevtić M, Klimenta J, Perović B (2018) A review on new methods for increasing the ampacity of underground power cables: cool and photovoltaic pavements. In Proceedings of the 6th international conference on renewable electrical power sources (6th ICREPS), pp 15–21 Klimenta D, Jevtić M, Klimenta J, Perović B (2018) A review on new methods for increasing the ampacity of underground power cables: cool and photovoltaic pavements. In Proceedings of the 6th international conference on renewable electrical power sources (6th ICREPS), pp 15–21
2.
Zurück zum Zitat Klimenta D, Perović B, Klimenta J, Jevtić M, Milovanović M, Krstić I (2018) Modelling the thermal effect of solar radiation on the ampacity of a low voltage underground cable. Int J Therm Sci 134:507–516CrossRef Klimenta D, Perović B, Klimenta J, Jevtić M, Milovanović M, Krstić I (2018) Modelling the thermal effect of solar radiation on the ampacity of a low voltage underground cable. Int J Therm Sci 134:507–516CrossRef
3.
Zurück zum Zitat Klimenta D, Perović B, Klimenta J, Jevtić M, Milovanović M, Krstić I (2018) Controlling the thermal environment of underground cable lines using the pavement surface radiation properties. IET Gener Transm Distrib 12(12):2968–2976CrossRef Klimenta D, Perović B, Klimenta J, Jevtić M, Milovanović M, Krstić I (2018) Controlling the thermal environment of underground cable lines using the pavement surface radiation properties. IET Gener Transm Distrib 12(12):2968–2976CrossRef
4.
Zurück zum Zitat Klimenta DO, Perović BD, Klimenta TLJ, Jevtić MM, Milovanović MJ, Krstić ID (2018) Controlling the thermal environment of underground power cables adjacent to heating pipeline using the pavement surface radiation properties. Therm Sci 22(6):2625–2640CrossRef Klimenta DO, Perović BD, Klimenta TLJ, Jevtić MM, Milovanović MJ, Krstić ID (2018) Controlling the thermal environment of underground power cables adjacent to heating pipeline using the pavement surface radiation properties. Therm Sci 22(6):2625–2640CrossRef
5.
Zurück zum Zitat Klimenta D, Jevtić M, Klimenta J, Perović B (2018) The effect of solar radiation on the ampacity of an underground cable with XLPE insulation. In Proceedings of the 4th virtual international conference on science, technology and management in energy (eNergetics 2018), pp 197–204 Klimenta D, Jevtić M, Klimenta J, Perović B (2018) The effect of solar radiation on the ampacity of an underground cable with XLPE insulation. In Proceedings of the 4th virtual international conference on science, technology and management in energy (eNergetics 2018), pp 197–204
6.
Zurück zum Zitat Klimenta D, Jevtić M, Milovanović M (2018) Comparing the effects of solar heating on low voltage underground cables with PVC and XLPE insulations. In: Proceedings of the 47th international scientific forum “Week of Science SPbPU”-2018, Part 2, pp 24–26 Klimenta D, Jevtić M, Milovanović M (2018) Comparing the effects of solar heating on low voltage underground cables with PVC and XLPE insulations. In: Proceedings of the 47th international scientific forum “Week of Science SPbPU”-2018, Part 2, pp 24–26
7.
Zurück zum Zitat IEC (2014) IEC Standard Electric Cables-Calculation of the Current Rating-Part 1-1: Current Rating Equations (100% Load Factor) and Calculation of Losses-General, 2.1 edn. IEC 60287-1-1:2006 + AMD1:2014 CSV IEC (2014) IEC Standard Electric Cables-Calculation of the Current Rating-Part 1-1: Current Rating Equations (100% Load Factor) and Calculation of Losses-General, 2.1 edn. IEC 60287-1-1:2006 + AMD1:2014 CSV
8.
Zurück zum Zitat IEC (2003) IEC technical report electric cables-calculations for current ratings-finite element method, 1st edn. IEC TR 62095:2003 IEC (2003) IEC technical report electric cables-calculations for current ratings-finite element method, 1st edn. IEC TR 62095:2003
9.
Zurück zum Zitat Anders GJ (2005) Rating of electric power cables in unfavorable thermal environment, 1st edn. Wiley, Hoboken Anders GJ (2005) Rating of electric power cables in unfavorable thermal environment, 1st edn. Wiley, Hoboken
10.
Zurück zum Zitat Nahman J, Tanaskovic M (2011) Evaluation of the loading capacity of a pair of three-phase high voltage cable systems using the finite-element method. Electr Power Syst Res 81(7):1550–1555CrossRef Nahman J, Tanaskovic M (2011) Evaluation of the loading capacity of a pair of three-phase high voltage cable systems using the finite-element method. Electr Power Syst Res 81(7):1550–1555CrossRef
11.
Zurück zum Zitat Nahman J, Tanaskovic M (2013) Calculation of the ampacity of high voltage cables by accounting for radiation and solar heating effects using FEM. Int Trans Electr Energy Syst 23(3):301–314CrossRef Nahman J, Tanaskovic M (2013) Calculation of the ampacity of high voltage cables by accounting for radiation and solar heating effects using FEM. Int Trans Electr Energy Syst 23(3):301–314CrossRef
12.
Zurück zum Zitat Nahman J, Tanaskovic M (2018) Calculation of the loading capacity of high voltage cables laid in close proximity to heat pipelines using iterative finite-element method. Int J Electr Power Energy Syst 103:310–316CrossRef Nahman J, Tanaskovic M (2018) Calculation of the loading capacity of high voltage cables laid in close proximity to heat pipelines using iterative finite-element method. Int J Electr Power Energy Syst 103:310–316CrossRef
13.
Zurück zum Zitat Terracciano M, Purushothaman S, de León F, Farahani AV (2012) Thermal analysis of cables in unfilled troughs: Investigation of the IEC standard and a methodical approach for cable rating. IEEE Trans Power Deliv 27(3):1423–1431CrossRef Terracciano M, Purushothaman S, de León F, Farahani AV (2012) Thermal analysis of cables in unfilled troughs: Investigation of the IEC standard and a methodical approach for cable rating. IEEE Trans Power Deliv 27(3):1423–1431CrossRef
14.
Zurück zum Zitat Yang L, Qiu W, Huang J, Hao Y, Fu M, Hou S, Li L (2018) Comparison of conductor-temperature calculations based on different radial-position-temperature detections for high-voltage power cable. Energies 11(117):1–17 Yang L, Qiu W, Huang J, Hao Y, Fu M, Hou S, Li L (2018) Comparison of conductor-temperature calculations based on different radial-position-temperature detections for high-voltage power cable. Energies 11(117):1–17
15.
Zurück zum Zitat Lindström L (2011) Evaluating impact on ampacity according to IEC-60287 regarding thermally unfavourable placement of power cables. Masters’ Degree Project, Royal Institute of Technology (KTH), Stockholm, Sweden, XR-EE-ETK 2011:009 Lindström L (2011) Evaluating impact on ampacity according to IEC-60287 regarding thermally unfavourable placement of power cables. Masters’ Degree Project, Royal Institute of Technology (KTH), Stockholm, Sweden, XR-EE-ETK 2011:009
16.
Zurück zum Zitat Klimenta D, Nikolajević S, Sredojević M (2007) Controlling the thermal environment in hot spots of buried power cables. Eur Trans Electr Power 17(5):427–449CrossRef Klimenta D, Nikolajević S, Sredojević M (2007) Controlling the thermal environment in hot spots of buried power cables. Eur Trans Electr Power 17(5):427–449CrossRef
17.
Zurück zum Zitat Klimenta D, Perovic B, Jevtic M, Radosavljevic J, Arsic N (2014) A thermal FEM-based procedure for the design of energy-efficient underground cable lines. Human Sci Univ J Tech 10:162–188 Klimenta D, Perovic B, Jevtic M, Radosavljevic J, Arsic N (2014) A thermal FEM-based procedure for the design of energy-efficient underground cable lines. Human Sci Univ J Tech 10:162–188
18.
Zurück zum Zitat COMSOL (2012) Heat transfer module user’s guide. Version 4:3 COMSOL (2012) Heat transfer module user’s guide. Version 4:3
19.
Zurück zum Zitat Heinhold L (1990) Power cables and their application-Part 1, Third revised edn. Siemens Aktiengesellschaft, Berlin Heinhold L (1990) Power cables and their application-Part 1, Third revised edn. Siemens Aktiengesellschaft, Berlin
20.
Zurück zum Zitat Huebner KH, Dewhirst DL, Smith DE, Byrom TG (2001) The finite element method for engineers, 4th edn. Wiley, New York Huebner KH, Dewhirst DL, Smith DE, Byrom TG (2001) The finite element method for engineers, 4th edn. Wiley, New York
21.
Zurück zum Zitat Salata F, Nardecchia F, Gugliermetti F, de Lieto Vollaro A (2016) How thermal conductivity of excavation materials affects the behavior of underground power cables. Appl Therm Eng 100:528–537CrossRef Salata F, Nardecchia F, Gugliermetti F, de Lieto Vollaro A (2016) How thermal conductivity of excavation materials affects the behavior of underground power cables. Appl Therm Eng 100:528–537CrossRef
22.
Zurück zum Zitat Salata F, Nardecchia F, de Lieto Vollaro A, Gugliermetti F (2015) Underground electric cables a correct evaluation of the soil thermal resistance. Appl Therm Eng 78:268–277CrossRef Salata F, Nardecchia F, de Lieto Vollaro A, Gugliermetti F (2015) Underground electric cables a correct evaluation of the soil thermal resistance. Appl Therm Eng 78:268–277CrossRef
23.
Zurück zum Zitat Salata F, de Lieto Vollaro A, de Lieto Vollaro R (2015) A model for the evaluation of heat loss from underground cables in non-uniform soil to optimize the system design. Therm Sci 19(2):461–474CrossRef Salata F, de Lieto Vollaro A, de Lieto Vollaro R (2015) A model for the evaluation of heat loss from underground cables in non-uniform soil to optimize the system design. Therm Sci 19(2):461–474CrossRef
Metadaten
Titel
Eliminating the effect of hot spots on underground power cables using cool pavements
verfasst von
Dardan Klimenta
Dragan Tasić
Bojan Perović
Jelena Klimenta
Miloš Milovanović
Ljiljana Anđelković
Publikationsdatum
08.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 4/2019
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-019-00867-w

Weitere Artikel der Ausgabe 4/2019

Electrical Engineering 4/2019 Zur Ausgabe

Neuer Inhalt